×
20.02.2019
219.016.c16c

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА СЕЛЕНОТЕЛЛУРИДА ЦИНКА

Вид РИД

Изобретение

Аннотация: Способ получения нанопорошка селенотеллурида цинка состава ZnSeTe относится к области получения сцинтилляционных материалов и может быть использован в нанотехнологиях, связанных с применением нанопорошков. Технический результат - получение нанопорошка селенотеллурида цинка состава ZnSeTe (х=0,02-0,03), обладающего люминесценцией в диапазоне длин волн 600-640 нм. Получение нанопорошка селенотеллурида цинка проводится путем осаждения из газовой фазы в потоке гелия. При этом источник испарения имеет состав ZnSeTe (х=0,08-0,12), температура источника испарения составляет 1130-1190°С, температура в зоне осаждения 110-150°С, а скорость потока гелия должна находится в интервале 4000-5000 мл/мин. Таким образом получается нанопорошок селенотеллурида цинка, имеющий состав ZnSeTe (х=0,02-0,03) с размером частиц основной фракции 2-10 нм. 1 ил., 1 табл.

Изобретение относится к области получения сцинтилляционных материалов и может быть использовано в нанотехнологиях, связанных с применением полупроводниковых нанопорошков.

Селенотеллурид цинка - широко распространенный сцинтиллятор, применяемый для регистрации ультрафиолетового, рентгеновского и гамма-излучений. Оптимальный состав материала - ZnSe1-xTex(x=0,02-0,03), а основной метод изготовления - выращивание объемных кристаллов из расплава модифицированным способом Бриджмена. Следует отметить, что при х<0,02 интенсивность люминесценции ZnSe1-xTex падает, а при х>0,03 обычно не наблюдается существенного увеличения интенсивности, но растет себестоимость материала (стоимость теллура выше, чем стоимость селена).

Быстрое развитие нанотехнологий вызывает интерес к нанокристаллам сцинтилляторов, в частности к нанопорошкам.

Известен способ получения нанокристаллов ZnSe1-xTex [Li С., Nishikawa К., Ando M., Enomoto H., Murase N. Synthesis of Cd-free water-soluble ZnSe(1-x)Te(x) nanocrystals with high luminescence in the blue region. J. Colloid Interface Sci., 321(2):468-476, 2008](аналог). Способ включает получение наночастиц ZnSe1-xTex (0≤х≤0,5) с размерами около 2 нм путем осаждения из растворов сложного состава с последующей тепловой обработкой и позволяет изготавливать нанокристаллы ZnSe1-xTex, покрытые оболочкой из сульфида цинка. Основной недостаток способа - невозможность выделения нанокристаллов ZnSe1-xTex в чистом виде из-за неизбежного осаждения из раствора толстого слоя ZnS на поверхности наночастиц ZnSe1-xTex при тепловой обработке. Существенным недостатком также является люминесценция таких нанокристаллов в голубой области видимого спектра (максимум полосы соответствует длине волны 448 нм). Чистый ZnSe1-xTex люминесцирует в диапазоне длин волн 600-640 нм, т.е. в красной области видимого спектра. Соответственно, существующая регистрирующая техника, разработанная для применения со сцинтилляторами на основе ZnSe1-xTex, предназначена для работы именно в этом спектральном диапазоне.

Наиболее близким по технической сущности к предлагаемому является способ получения нанопорошка теллурида цинка-кадмия состава Cd0.9Zn0.1Te [Н.Н.Колесников, В.В.Кведер, Д.Н.Борисенко, Е.Б.Борисенко, В.К.Гартман, А.В.Тимонина. Способ получения нанопорошка теллурида цинка-кадмия состава Cd0.9Zn0.1Te. Патент РФ на изобретение №2307785] (прототип), включающий осаждение из газовой фазы в потоке гелия с использованием реактора с источником испарения. При этом источник испарения имеет состав Cd0.5Zn0.5Te, температура источника паров составляет 800-850°С, температура в зоне осаждения нанопорошка 540-610°С, а скорость потока гелия 1000-1500 мл/мин.

Основным недостатком этого способа является то, что он не позволяет получать нанопорошок ZnSe1-xTex.

Задачей данного изобретения является получение нанопорошка селенотеллурида цинка с составом ZnSe1-xTex (х=0,02-0,03), обладающего люминесценцией в диапазоне длин волн 600-640 нм.

Эта задача решается в предлагаемом способе получения нанопорошка селенотеллурида цинка путем осаждения из газовой фазы в потоке гелия с использованием реактора с источником испарения. При этом источник испарения имеет состав ZnSe1-xTex (х=0,08-0,12), температура источника испарения 1130-1190°С, температура в зоне осаждения 110-150°С, а скорость потока гелия 4000-5000 мл/мин.

Такой способ позволяет получать нанопорошок селенотеллурида цинка состава ZnSe1-xTex (х=0,02-0,03) и с размером частиц 2-10 нм. Нанопорошок обладает люминесценцией в диапазоне длин волн 600-640 нм (максимум полосы соответствует длине волны 630 нм), что иллюстрируется чертежом, где представлены спектры люминесценции объемного кристалла ZnSe0.979Te0.021 и нанопорошка селенотеллурида цинка того же состава, полученные при оптическом (ультрафиолетовом, длина волны 285 нм) возбуждении. Следует отметить, что интенсивность люминесценции нанопорошка примерно в 2 раза выше, чем у объемного кристалла, что хорошо видно на графике.

Состав источника испарения выбран экспериментально, что иллюстрируется таблицей.

Как видно из таблицы, строка 1, при составе источника испарения ZnSe1-хТех (х=0,07) состав нанопорошка в зоне осаждения не соответствует заданному. Такое низкое содержание теллура в нанопорошке (ZnSe1-xTex, х=0,009) приводит к значительному снижению интенсивности люминесценции.

При увеличении содержания теллура в материале источника испарения до ZnSe1-xTex (х=0,08) состав нанопорошка в зоне осаждения соответствует заданному (строка 2 таблицы) и остается в требуемом интервале х=0,02-0,03 при дальнейшем увеличении концентрации теллура в материале источника вплоть до ZnSe1-xTex (x=0,12) (строки 3 и 4 таблицы). Однако уже при составе источника ZnSe1-xTex (x=0,13) состав нанопорошка выходит за границу заданного интервала. При этом наблюдается осаждение не только нанопорошка ZnSe1-xTex, но и соосаждение наночастиц теллурида цинка. Следует отметить, что присутствие свободного ZnTe в ZnSe1-xTex значительно ухудшает сцинтилляционные характеристики материала, так как теллурид цинка частично поглощает излучение с длинами волн в интервале 600-640 нм.

Состав источника испарения Состав нанопорошка в зоне осаждения
1 ZnSe1-xTex (х=0,07) ZnSe1-xTex (х=0,009)
2 ZnSe1-xTex (x=0,08) ZnSe1-xTex (х=0,021)
3 ZnSe1-xTex (х=0,10) ZnSe1-xTex (х=0,026)
4 ZnSe1-xTex (х=0,12) ZnSe1-xTex (х=0,029)
5 ZnSe1-xTex (х=0,13) Смесь нанопорошка ZnSe1-xTex (х=0,034) и наночастиц теллурида цинка

Эти экспериментальные результаты можно объяснить следующим. В литературе многократно описана полная или частичная диссоциация халькогенидов цинка на компоненты при испарении (см., например, N.N.Kolesnikov, R.В.James, N.S.Berzigiarova, M.P.Kulakov. HPVB and HPVZM shaped growth of CdZnTe, CdSe and ZnSe crystals. X-ray and gamma-ray detectors and applications IV. Proc. SPIE, 2002, v. 4787, p.93-104). В условиях предлагаемого процесса испаряющийся материал источника диссоциирует с образованием паров теллурида цинка и селенида цинка. Пары, переносимые в зону осаждения потоком гелия, вновь реагируют с образованием селенотеллурида цинка. Однако скорости переноса паров ZnSe и ZnTe различны и температуры конденсации паров также не совпадают (теллурид цинка конденсируется при более высокой температуре, чем ZnSe). Поэтому теллурид цинка осаждается, в основном, в коллекторе перед зоной осаждения (со стороны реактора), и лишь часть паров ZnTe попадает в зону осаждения, где реагирует с газообразным ZnSe. (Чистый ZnTe по окончании процесса может быть извлечен из коллектора и повторно использован для синтеза материала-источника). Содержание паров ZnTe в зоне осаждения и, следовательно, концентрация теллура в нанопорошке растет пропорционально с увеличением содержания Те в источнике паров. При относительно небольших концентрациях теллура в источнике, т.е. при составах источника ZnSe1-xTex (х≤0,12), реакция паров ZnSe и ZnTe в зоне осаждения протекает полностью, но при дальнейшем росте содержания паров ZnTe в зоне осаждения полнота протекания реакции уже не обеспечивается в условиях процесса и происходит соосаждение наночастиц селенотеллурида цинка и чистого ZnTe.

Температура источника испарения 1130-1190°С выбрана экспериментально. При температурах ниже 1130°С материал источника диссоциирует, однако ZnTe практически не испаряется и в зоне осаждения образуется только нанопорошок ZnSe. При температурах выше 1190°С возрастает скорость испарения источника, что приводит к более интенсивному поступлению паров ZnTe в зону осаждения и вызывает соосаждение наночастиц селенотеллурида цинка и ZnTe.

Температура в зоне осаждения 110-150°С выбрана экспериментально. При температурах ниже 110°С нанопорошок не образуется. В зоне осаждения растут микрокристаллы с размерами от 0,3-0,5 до 1-3 мкм. При температурах выше 150°С нанопорошок не образуется, так как пары ZnSe и ZnTe практически не реагируют в газовой фазе, а уносятся потоком гелия в коллектор за зоной осаждения, где они конденсируются раздельно.

Скорость потока гелия 4000-5000 мл/мин выбрана экспериментально. При снижении скорости ниже 4000 мл/мин подача паров от источника в зону осаждения существенно замедляется и скорость образования нанопорошка теллурида цинка-кадмия падает ниже целесообразной. При увеличении скорости потока выше 5000 мл/мин значительная часть паров не успевает реагировать в зоне осаждения и уносится потоком гелия в коллектор за зоной осаждения.

Пример 1.

Навеска селенотеллурида цинка с составом ZnSe0,92Te0,08 помещается в зону испарения реактора. Реактор разогревается так, что температура в зоне испарения составляет 1190°С, а в зоне осаждения равна 150°С. В реактор подается газообразный гелий со скоростью 5000 мл/мин. По окончании процесса из зоны осаждения извлекается нанопорошок селенотеллурида цинка с составом ZnSe0,979Te0,021 и с размером частиц основной фракции 6-10 нм. Нанопорошок обладает люминесценцией в диапазоне длин волн 600-640 нм (максимум полосы соответствует длине волны 630 нм).

Пример 2.

Навеска селенотеллурида цинка с составом ZnSe0,9Te0,1 помещается в зону испарения реактора. Реактор разогревается так, что температура в зоне испарения составляет 1160°С, а в зоне осаждения равна 130°С. В реактор подается газообразный гелий со скоростью 4500 мл/мин. По окончании процесса из зоны осаждения извлекается нанопорошок селенотеллурида цинка состава ZnSe0,974Te0,026 и с размером частиц основной фракции 4-8 нм. Нанопорошок обладает люминесценцией в диапазоне длин волн 600-640 нм (максимум полосы соответствует длине волны 630 нм).

Пример 3.

Навеска селенотеллурида цинка с составом ZnSe0,88Te0,12 помещается в зону испарения реактора. Реактор разогревается так, что температура в зоне испарения составляет 1130°С, а в зоне осаждения равна 110°С. В реактор подается газообразный гелий со скоростью 4000 мл/мин. По окончании процесса из зоны осаждения извлекается нанопорошок селенотеллурида цинка с составом ZnSe0.971Te0.029 и с размером частиц основной фракции 2-6 нм. Нанопорошок обладает люминесценцией в диапазоне длин волн 600-640 нм (максимум полосы соответствует длине волны 630 нм).

Способ получения нанопорошка селенотеллурида цинка с составом ZnSeTe осаждением из газовой фазы в потоке гелия с использованием реактора с источником испарения, отличающийся тем, что источник испарения имеет состав ZnSeTe (х=0,08-0,12), а процесс проводится при температуре источника испарения 1130-1190°С, температуре в зоне осаждения 110-150°С и скорости потока гелия 4000-5000 мл/мин.
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
29.06.2019
№219.017.a146

Способ получения высокотемпературного сверхпроводника в системе натрий-оксид натрия

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами. Поверхность образца металлического натрия окисляют в реакторе в потоке осушенного кислорода,...
Тип: Изобретение
Номер охранного документа: 0002441933
Дата охранного документа: 10.02.2012
10.07.2019
№219.017.aef1

Способ получения высокочистого титана для распыляемых мишеней

Изобретение относится к способу получения высокочистого титана для распыляемых мишеней. Способ включает очистку исходных прутков металлического титана, полученных йодидным способом, в реакторе. Причем очистку осуществляют в потоке осушенного от влаги хлора при температуре 500°С. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002418874
Дата охранного документа: 20.05.2011
10.07.2019
№219.017.b10f

Способ получения высокотемпературного сверхпроводника в системе натрий - теллурид натрия

Изобретение относится к технологии получения высокотемпературных проводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами. Порошок теллура с металлическим натрием нагревают до температуры 200°С в реакторе под...
Тип: Изобретение
Номер охранного документа: 0002441934
Дата охранного документа: 10.02.2012
10.07.2019
№219.017.b116

Способ получения высокотемпературного сверхпроводника в системе железо-оксид железа

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих уникальными физическими свойствами. Способ включает частичное восстановление мелкодисперсного порошка оксида железа...
Тип: Изобретение
Номер охранного документа: 0002441845
Дата охранного документа: 10.02.2012
10.07.2019
№219.017.b117

Способ получения высокотемпературного сверхпроводника в системе медь-оксид меди

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами. Порошок меди окисляют в реакторе в потоке осушенного кислорода, подаваемого со скоростью 20-30...
Тип: Изобретение
Номер охранного документа: 0002441936
Дата охранного документа: 10.02.2012
10.07.2019
№219.017.b118

Способ получения высокотемпературного сверхпроводника в системе натрий-теллурид сурьмы

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-теллурид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами. Смесь порошка теллурида сурьмы и металлического натрия нагревают в реакторе под вакуумом...
Тип: Изобретение
Номер охранного документа: 0002441935
Дата охранного документа: 10.02.2012
Showing 1-10 of 49 items.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5006

Бампер задний

Изобретение относится к области транспортного машиностроения, а именно к бамперам автомобилей. Бампер задний (1) содержит центральную секцию (2), жестко закрепленную на раме при помощи кронштейнов, выполненную из цельноштампованного металлического бруса, и две боковые секции (4, 5),...
Тип: Изобретение
Номер охранного документа: 0002486079
Дата охранного документа: 27.06.2013
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
20.03.2015
№216.013.3499

Люминесцентное литий-боратное стекло

Изобретение относится к области люминесцентных стекол для преобразования ультрафиолетового излучения в белый цвет. Техническим результатом изобретения является создание люминесцентного стекла с высокой прозрачностью в видимом диапазоне. Люминесцентное литий-боратное стекло на основе тетрабората...
Тип: Изобретение
Номер охранного документа: 0002544940
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3f8e

Ампула для выращивания кристаллов в условиях микрогравитации

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов в условиях микрогравитации. Ампула содержит герметичный корпус 1 из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель 4 с загрузкой селенида галлия 5 и графитовые...
Тип: Изобретение
Номер охранного документа: 0002547758
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.437b

Способ определения доброкачественных и злокачественных новообразований щитовидной железы человека

Изобретение относится к области молекулярной биологии и медицины и предназначено для определения доброкачественных и злокачественных новообразований щитовидной железы (ЩЖ) человека. Осуществляют взятие образца ткани опухоли ЩЖ и прилежащей неизмененной ткани железы в качестве контроля,...
Тип: Изобретение
Номер охранного документа: 0002548773
Дата охранного документа: 20.04.2015
20.11.2015
№216.013.92a0

Способ дифференциальной диагностики новообразований щитовидной железы человека

Изобретение касается способа дифференциальной диагностики новообразований щитовидной железы (ЩЖ) человека. Способ включает выделение из образца опухолевой ткани ЩЖ человека и образца прилежащей неизмененной ткани железы (в качестве контроля) суммарного пула РНК (в том числе содержащий и...
Тип: Изобретение
Номер охранного документа: 0002569154
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9ea0

Холодный катод

Изобретение относится к области получения углеродных наноструктур, а именно слоев углеродных нанотрубок на металлических подложках, применяемых в качестве холодных катодов (автоэлектронных источников эмиссии). Технический результат - создание простого в изготовлении холодного катода без...
Тип: Изобретение
Номер охранного документа: 0002572245
Дата охранного документа: 10.01.2016
+ добавить свой РИД