×
20.04.2023
223.018.4acb

Результат интеллектуальной деятельности: СПОСОБ ПОМЕХОЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ МОЩНЫХ ЛАЗЕРНЫХ КОМПЛЕКСОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиолокации и может использоваться для защиты оптико-электронных средств (ОЭС) от мощных оптических излучений. Технический результат состоит в повышении эффективности защиты ОЭС от поражения оптическим излучением. Для этого принимают оптические излучения ОЭС, устанавливают вокруг ОЭС N ложных оптических целей (ЛОЦ) на расстоянии от ОЭС, за пределами которого поток падающего мощного лазерного излучения (МЛИ) мощного лазерного комплекса (МЛК) не поразит ОЭС на заданной дистанции непоражения, при этом расстояние между соседними ЛОЦ составляет максимальное значение радиуса зоны, в пределах которой поток локационного излучения МЛК облучит минимум одну ЛОЦ на заданной дистанции непоражения, осуществляют имитацию параметров ОЭС ЛОЦ при облучении локационным излучением и МЛИ МЛК, формируют и передают сигнал имитации поражения ОЭС ЛОЦ МЛИ МЛК на ОЭС. 2 ил.

Изобретение относится к области защиты оптико-электронных средств (ОЭС) от мощных оптических излучений.

Известен способ защиты приемника оптического излучения (см., например, [1]), основанный на приеме входного оптического потока матричным фотоприемным устройством (МФПУ), измерении величины ii выходного сигнала каждого i-го чувствительного элемента (ЧЭ) МФПУ, где - номер ЧЭ МФПУ, N - количество ЧЭ в МФПУ, и сравнении ее значения с пороговым in, закрытии при превышении величины г.выходного сигнала j'-ого ЧЭ МФПУ порогового значения iП j-ой части входного оптического потока, где - номер ЧЭ МФПУ, выходной сигнал которого превысил пороговое значение и номер части входного оптического потока падающего на этот ЧЭ МФПУ, периодическом открытии j-ой части входного оптического потока и измерении величины ij выходного сигнала j-го ЧЭ МФПУ, закрытии при ij≥iП j-ой части входного оптического потока, оставлении при ij≥iП j-ой части входного оптического потока открытой. Недостатком способа является низкий порог лучевой стойкости, не исключающий «прожиг» защитного элемента и дальнейшее поражения ОЭС.А также непосредственное воздействие мощного лазерного излучения (МЛИ) на ОЭС, выдвигает жесткие требования к времени реакции его защиты.

Известен способ защиты ОЭС от МЛИ (см., например, [2]), основанный на приеме оптического излучения ОЭС, пропускании оптического излучения через заранее установленный перед элементом из состава ОЭС с минимальным значением лучевой стойкости EЭ min и временем разрушения под воздействием оптического излучения равным tЭpaз защитный элемент со значениями лучевой стойкости ЕЗЭ и времени разрушения под воздействием оптического излучения tЗЭраз меньше значений EЭmin и tЭраз соответственно, пропускающий оптическое излучение мощностью не превышающей значение ЕЗЭ и имеющий спектральные параметры своего и отражаемого оптических излучений, сопровождающие процесс разрушения под воздействием оптического излучения мощностью превышающей значение ЕЗЭ, идентичные элементу с минимальным значением EЭmin, защите при воздействии оптического излучения мощностью превышающей значение ЕЗЭ ОЭС разрушением защитного элемента и имитации разрушения элемента с минимальным значением ЕЭmin, замене при разрушении защитного элемента под воздействием оптического излучения новым. Недостатком способа также является ограничение числа защит от воздействия МЛИ. Также непосредственное воздействие мощного лазерного излучения (МЛИ) на ОЭС, выдвигает жесткие требования к времени реакции его защиты.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности защиты ОЭС от поражения оптическим излучением.

Технический результат достигается тем, что в известном способе помехо-защиты ОЭС от мощных лазерных комплексов (МЛК), основанном на приеме оптических излучений ОЭС, устанавливают вокруг ОЭС N ложных оптических целей (ЛОЦ) на расстоянии от ОЭС Ri≥Rmin, где Rmin - минимальное значение радиуса зоны относительно ОЭС, за пределами которой поток падающего МЛИ МЛК не поразит ОЭС на заданной дистанции непоражения, Ri - расстояние между i-ой ЛОЦ от ОЭС, , при этом расстояние между соседними ЛОЦ составляет R≤Rmax, Rmax - максимальное значение радиуса зоны, в пределах которой поток локационного излучения МЛК облучит минимум одну ЛОЦ на заданной дистанции непоражения, R - расстояние между i-ой и i+1-ой ЛОЦ, имитируют параметры ОЭС ЛОЦ при облучении локационным излучением и МЛИ МЛК, формируют и передают сигнал имитации поражения ОЭС ЛОЦ МЛИ МЛК на ОЭС.

Сущность предлагаемого способа заключается в следующем. Защита ОЭС от поражения оптическим излучением обеспечивается ОЭС за счет смещения точки наведения МЛИ на основе использования вынесенных ЛОЦ.

С системных позиций МЛК включает две основные подсистемы (см., например, [3]): подсистема поиска, обнаружения, оценки параметров и распознавания ОЭС (информационного обеспечения); подсистема формирования, генерации и наведения поражающего излучения (поражения). Каждая из подсистем в силу внешний и внутренних факторов вносит свой вклад в точность наведения узкого луча поражающего канала и удержания его в требуемом направлении. Точность наведения луча МЛИ влияет на величину потока оптического излучения на входе ОЭС [4,5]. Следовательно, смещение точки наведения позволит снизить поток излучения на входе ОЭС до требуемого уровня. Эффективная площадь рассеивания ОЭС позволяет локационному средству по величине отраженного сигнала обнаружить и определить его местоположение (см., например, [6], стр. 11-26). Для имитации вокруг ОЭС используют ложные оптические цели (ЛОЦ), приводящие дополнительным ошибкам наведения МЛИ МЛК. В предлагаемом способе ЛОЦ имитирует параметры ОЭС как при локации, так и при воздействии МЛИ МЛК [7].

Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - носитель ОЭС; 2 - ОЭС; 3 - ЛОЦ; 4 - наземный МЛК; 5 - сектор просмотра подстилающей поверхности ОЭС; 6 - излучения МЛК. На фигуре 1 исключены элементы ненесущие смысловой нагрузки для раскрытия сущности изобретения.

Рассмотрим ситуацию, когда ОЭС 2 является элементов воздушного комплекса наблюдения, выполняющего задачу в зоне действия наземного МЛК 4. ОЭС 2 с воздушного носителя 1 ведет просмотр подстилающей поверхности в секторе 5. Вокруг ОЭС 2 установлено N ЛОЦ 3 на расстоянии Ri≥Rmin и (Rmin - минимальное значение радиуса зоны относительно ОЭС 2, за пределами которого падающий поток МЛИ 6 МЛК 4 не поразит ОЭС 2 на заданной дистанции непоражения Ri - расстояние установки i-ой ЛОЦ от ОЭС 2, ), при этом расстояние между соседними ЛОЦ 3 составляет R≤Rmax (Rmax - максимальное значение радиуса зоны, в пределах которой поток локационного излучения 6 МЛК 4 облучит минимум одну ЛОЦ 3 на заданной дистанции непоражения, R - расстояние установки между i -ой и i+1-ой ЛОЦ 3).

МЛК 4 осуществляет локационный поиск целей. Взаимное расположение ОЭС 2 и ЛОЦ 3 обеспечивает первоочередной оптический контакт локационного излучения 6 МЛК 4 с ЛОЦ 3. По отраженному излучению от ЛОЦ 3 МЛК 4 идентифицирует ее как цель. По результатам координатной оценки ЛОЦ 3 МЛК 4 формирует пространственные параметры МЛИ 6. В результате ошибка наведения поражающего канала МЛК 4 будет включать ошибку целеуказания, которую вносит местоположение ЛОЦ 3. МЛИ 6 МЛК 4 попадает на ЛОЦ 3, под воздействием которого ЛОЦ 3 имитирует поражение ОЭС.МЛК 4 принимает ложное решение об успешном выводе из работоспособного состояния ОЭС. При этом расстояние между ОЭС 2 и ЛОЦ 3 обеспечивает эффективную защиту ОЭС 2 от МЛИ 6 МЛК 4. ЛОЦ 3 передает сигналы о факте применения по ней МЛК 4 на ОЭС 2.

Минимальное значение Rmin, обеспечивающее эффективную защиту ОЭС от МЛК рассматриваемым способом при условии, что интенсивность мощного лазерного излучения имеет гауссовое распределение и закон ошибок наведения релеевский вид, можно определить с помощью выражения

где Р0 - известное значение мощности потока МЛИ МЛК; Lmin - заданная минимальная дистанция защиты ОЭС от МЛК; β - известная угловая средняя квадратичная ошибка наведения луча МЛИ МЛК; IП - известное пороговое значение интенсивности МЛИ на входе ОЭС, при котором происходит поражение ОЭС; αΣ - суммарный показатель энергетического ослабления (потерь) МЛИ в атмосфере; рз - заданная вероятность защищенности ОЭС от МЛК.

Так, например, для типовых исходных значений Р0=10 Вт, Lmin=200 м, Рпор=0,95 β=2⋅10-4 рад, IП=10 Вт/м2, αΣ ≈ min, составит Rmin=0,526 м, а при увеличении в два раза Р0=20 Вт - Rmin=0,744 м, что реализуемо практически на любом носителе ОЭС.

На фигуре 2 изображена блок схема варианта устройства, реализующего способ. Блок - схема включает: датчик температуры ЛОЦ 7, блок защиты ОЭС от МЛИ 8, остальные обозначения соответствуют фигуре 1.

Устройство работает следующим образом. Датчик температуры ЛОЦ 7 измеряет температуру ЛОЦ 3. При превышении температуры порогового значения вырабатывается сигнал об облучении ЛОЦ 3 МЛИ МЛК и предается на ОЭС 2.

Таким образом, у заявляемого способа появляются свойства повышения эффективности защиты ОЭС от поражения оптическим излучением за счет смещения точки наведения МЛИ МЛК на основе использования вынесенных ЛОЦ на требуемое удаление. Тем самым, предлагаемый авторами, способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен помехозащиты ОЭС от МЛК, основанный на приеме на приеме оптических излучений ОЭС, установке вокруг ОЭС N ЛОЦ на расстоянии от ОЭС Ri≥Rmin, где Rmin - минимальное значение радиуса зоны относительно ОЭС, за пределами которой поток падающего МЛИ МЛК не поразит ОЭС на заданной дистанции непоражения, Ri - расстояние между i-ой ЛОЦ от ОЭС, , при этом расстояние между соседними ЛОЦ составляет R≤Rmax, Rmax - максимальное значение радиуса зоны, в пределах которой поток локационного излучения МЛК облучит минимум одну ЛОЦ на заданной дистанции непоражения, R - расстояние между i-ой и i+1-ой ЛОЦ, имитации параметров ОЭС ЛОЦ при облучении локационным излучением и МЛИ МЛК, формировании и передаче сигнала имитации поражения ОЭС ЛОЦ МЛИ МЛК на ОЭС.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы оптические и оптико-электронные блоки и устройства.

1. Пат. 2363017 RU, МПК H04N 5/238, H01L 31/0232. Способ защиты приемника оптического излучения / Ю.Л. Козирацкий, А.Ю. Козирацкий, П.Е. Кулешов, Р.Г. Хильченко, Д.В. Прохоров, Д.Е. Столяров; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2016107511; заявл. 01.03.16; опубл. 16.11.17, Бюл. №32. - 11 с.

2. Пат. 2363017 RU, H04N 5/238, H01L 31/0232, G01B 5/205. Способ защиты ОЭС от мощного лазерного излучения / П.Е. Кулешов, А.Н. Глушков, А.В. Алабовский, В.Д. Попело, А.В. Марченко; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2019104733; заявл. 19.02.2019; опубл. 17.12.2019, Бюл. №35. - 10 с.

3. Кулешов П.Е, Глушков А.Н., Марченко А.В. Классификация технических методов (способов) защиты оптико-электронных средств от лазерного комплекса функционального поражения / П.Е. Кулешов, А.Н. Глушков, А.В. Марченко // Воздушно-космические силы. Теория и практика (электронный журнал). 2019. №10. С. 72-80.

4. Козирацкий Ю.Л. Оптимизация угла расходимости излучения лазерной локационной системы в условиях помех / Ю.Л. Козирацкий // Радиотехника. - 1994. - №3. - С. 6-10.

5. Козирацкий Ю.Л., Козирацкий А.Ю., Кулешов П.Е. и др. Моделирование пространственного распределения лазерного излучения с многомодовым типом колебаний / Ю.Л. Козирацкий, А.Ю. Козирацкий, П.Е. Кулешов и др. // Антенны. - 2007. - №4 (119). - С. 54 - 56.

6. Козирацкий Ю.Л., Афанасьева Е.М., Гревцев А.И. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов / Ю.Л. Козирацкий, Е.М. Афанасьева, А.И. Гревцев и др. М.: «ЗАО «Издательство «Радиотехника», 2015, 456 с.

7. Пат. 2698466 RU, МПК G01S 7/40. Способ формирования ложной оптической цели / Козирацкий Ю.Л., Глушков А.Н., П.Е. Кулешов, Дробышевский Н.В., Прохоров Д.В.; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2018142951; заявл. 04.12.2018; опубл. 27.08.2019, Бюл. №24. - 7 с.

Способ помехозащиты оптико-электронных средств от мощных лазерных комплексов, основанный на приеме оптических излучений оптико-электронным средством, отличающийся тем, что устанавливают вокруг оптико-электронного средства N ложных оптических целей на расстоянии от оптико-электронного средства R≥R, где R - минимальное значение радиуса зоны относительно оптико-электронного средства, за пределами которой поток падающего мощного лазерного излучения мощного лазерного комплекса не поразит оптико-электронное средство на заданной дистанции непоражения, R - расстояние между i-й ложной оптической целью и оптико-электронным средством, , при этом расстояние между соседними ложными оптическими целями составляет R≤R, R - максимальное значение радиуса зоны, в пределах которой поток локационного излучения мощного лазерного комплекса облучит минимум одну ложную оптическую цель на заданной дистанции непоражения, R - расстояние между i-й и i+1-й ложными оптическими целями, имитируют параметры оптико-электронного средства ложной оптической целью при облучении локационным излучением и мощным лазерным излучением мощного лазерного комплекса, формируют и передают сигнал имитации поражения оптико-электронного средства ложной оптической целью мощным излучением мощного лазерного комплекса на оптико-электронное средство.
Источник поступления информации: Роспатент

Showing 41-50 of 244 items.
20.01.2018
№218.016.1657

Способ наведения управляемого боеприпаса

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Для наведения управляемого боеприпаса определяют координаты цели, подсвечивают область подстилающей поверхности лазерным излучением, захватывают и наводят самонаводящийся боеприпас...
Тип: Изобретение
Номер охранного документа: 0002635299
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.17c3

Способ определения дальности и радиальной скорости цели в рлс с непрерывным излучением и устройство его реализующее

Изобретение относится к радиолокации и может использоваться в радиотехнических системах с непрерывным излучением для определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Достигаемый технический результат - увеличение дальности обнаружения...
Тип: Изобретение
Номер охранного документа: 0002635366
Дата охранного документа: 13.11.2017
13.02.2018
№218.016.2075

Способ определения угловых координат на источник направленного оптического излучения

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой...
Тип: Изобретение
Номер охранного документа: 0002641637
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.3157

Полуактивная головка самонаведения

Изобретение относится к головкам самонаведения, используемым для формирования сигналов управления высокоточным оружием. Полуактивная головка самонаведения содержит последовательно соединенные многоканальное приемное устройство, сумматор, пороговое устройство, первый селектор импульсов и блок...
Тип: Изобретение
Номер охранного документа: 0002645046
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3a81

Способ измерения морфологической мультифрактальной сигнатуры

Изобретение относится к области радиотехники и может быть использовано в системах автоматизированного обнаружения и распознавания наземных объектов на радиолокационных изображениях земной поверхности. Техническим результатом является повышение точности измерения морфологической...
Тип: Изобретение
Номер охранного документа: 0002647675
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.46a4

Способ определения содержания нефтяных топлив в грунтах

Использование: для определения содержания нефтяных топлив в грунтах «на месте». Сущность изобретения заключается в том, что способ определения содержания нефтяных топлив в грунтах включает определение типа грунта, определение типа нефтяного топлива, установление содержания концентрации топлива...
Тип: Изобретение
Номер охранного документа: 0002650437
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.47b8

Способ снижения радиолокационной заметности воздухозаборника самолетного двигателя и устройство его реализующее

Изобретение относится к области радиолокационной маскировки объектов и может быть использовано для снижения эффективной площади рассеяния воздухозаборника самолетного двигателя в передней полусфере. Техническим результатом заявленного изобретения является повышение эффективности снижения...
Тип: Изобретение
Номер охранного документа: 0002650701
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4d39

Комплекс энергогенерирующий

Настоящее изобретение относится к энергетике, к задаче прямого преобразования тепловой энергии в электрическую посредством термоэлектрической и термоэлектронной эмиссии, в частности к получению электрической энергии за счет тепла газов, образующихся при термохимическом преобразовании топлива, и...
Тип: Изобретение
Номер охранного документа: 0002652241
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4e14

Домкрат винтовой телескопический

Изобретение относится к области наземного обслуживания транспортных средств, для ремонта и технического осмотра. Домкрат содержит корпус с опорной площадкой, подъемное устройство с гайкой и втулкой, механизм привода. На торце гайки установлена муфта, содержащая шайбу, сепаратор, полумуфту,...
Тип: Изобретение
Номер охранного документа: 0002652364
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4f44

Способ статической балансировки кривошипно-шатунной группы

Изобретение относится к области машиностроения, в частности к статической балансировке кривошипно-шатунной группы. Способ статической балансировки кривошипно-шатунной группы заключается в удалении дисбаланса путем снятия части металла на противовесах коленчатого вала. При статической...
Тип: Изобретение
Номер охранного документа: 0002652694
Дата охранного документа: 28.04.2018
Showing 41-50 of 55 items.
29.08.2019
№219.017.c452

Способ формирования ложной оптической цели

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств (ОЭС) от мощного лазерного излучения. Достигаемый технический результат –...
Тип: Изобретение
Номер охранного документа: 0002698466
Дата охранного документа: 27.08.2019
29.08.2019
№219.017.c4b2

Способ скрытия оптико-электронного средства от лазерных систем

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения. Достигаемый технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002698465
Дата охранного документа: 27.08.2019
01.09.2019
№219.017.c523

Способ скрытия оптико-электронных средств

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения. Способ скрытия оптико-электронного средств (ОЭС)...
Тип: Изобретение
Номер охранного документа: 0002698569
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c583

Способ снижения эффективной площади рассеивания оптико-электронного прибора

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения. Способ снижения эффективной площади рассеивания...
Тип: Изобретение
Номер охранного документа: 0002698513
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5b6

Способ распознавания локационных оптических сигналов

Изобретение относится к распознаванию информационных образов и может быть использовано в лазерных локационных системах для распознавания сигналов, отраженных от оптико-электронных средств (ОЭС). Способ распознавания локационных оптических сигналов, основанный на излучении лазерного локационного...
Тип: Изобретение
Номер охранного документа: 0002698514
Дата охранного документа: 28.08.2019
02.10.2019
№219.017.d11b

Способ координатного мониторинга источника радиоизлучения

Изобретение относится к области радиотехники, а именно к пассивным системам радиомониторинга, и, в частности, может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат - сокращение носителей забрасываемых элементов координатного...
Тип: Изобретение
Номер охранного документа: 0002700270
Дата охранного документа: 16.09.2019
24.10.2019
№219.017.d9b4

Способ формирования активной ложной цели по дальности

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия. Способ формирования активной ложной цели по дальности базируется на установке на объекте лазерного приемопередающего устройства,...
Тип: Изобретение
Номер охранного документа: 0002703936
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da35

Способ скрытия оптико-электронных приборов от лазерных локационных средств

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия. Способ скрытия оптико-электронных приборов (ОЭП) от лазерных локационных средств (ЛЛС) базируется на приеме оптического излучения...
Тип: Изобретение
Номер охранного документа: 0002703921
Дата охранного документа: 22.10.2019
21.11.2019
№219.017.e480

Способ измерения радиуса пространственной когерентности локационных оптических сигналов

Изобретение относится к области оптико-электронной техники и касается способа измерения радиуса пространственной когерентности локационных оптических сигналов. Способ включает в себя облучение объекта отражения когерентным оптическим излучением, детектирование опорного, отраженного от объекта и...
Тип: Изобретение
Номер охранного документа: 0002706510
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e81b

Способ повышения помехозащищенности управляемого боеприпаса

Изобретение относится к области военной техники и касается способа повышения помехозащищенности управляемого боеприпаса. Способ заключается в определении координат цели, подсвете области нахождения цели, захвате и наведении боеприпаса по отраженному оптическому излучению от области подсвета....
Тип: Изобретение
Номер охранного документа: 0002707426
Дата охранного документа: 26.11.2019
+ добавить свой РИД