×
24.07.2020
220.018.3724

Способ приготовления катализатора гидроочистки дизельного топлива

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Настоящее изобретение относится к способу приготовления катализатора гидроочистки дизельного топлива, характеризующемуся тем, что катализатор готовят пропиткой носителя, который содержит, мас.%: диоксид кремния SiO, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия AlBO со структурой норбергита – 5,0-25,0, γ-AlO – остальное; водным раствором комплексных соединений [Со(HO)(CHO)][MoO(CHO)] и Со[НРМоО] с последующей сушкой, при этом концентрации компонентов раствора обеспечивают получение катализатора, который включает в свой состав, мас.%: [Со(HO)(CHO)][MoO(CHO)] – 7,7-32,0; Со[НРМоО] – 11,1-29,0; носитель – остальное; с последующим сульфидированием катализатора, при этом катализатор после сульфидирования по известным методикам содержит, мас.%: Мо – 10,0-16,0; Со – 2,7-4,5; P – 0,8-1,8; S – 6,7-10,8; носитель – остальное. Техническим результатом настоящего изобретения является получение катализатора, имеющего максимальную активность в целевых реакциях, протекающих при гидроочистке смесевого дизельного топлива, содержащего дистилляты вторичных процессов нефтепереработки. 4 з.п. ф-лы, 2 ил., 1 табл., 7 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам приготовления катализаторов гидроочистки для получения дизельного топлива с низким содержанием серы.

В настоящее время растет спрос на катализаторы глубокой гидроочистки в связи с ужесточением действующих экологических стандартов на качество дизельного топлива в соответствие с [ГОСТ Р 52368-2005 (ЕН 590:2009). Топливо дизельное ЕВРО. Технические условия]. Помимо этого, наблюдаются тенденции вовлечения в переработку более тяжелых нефтяных фракций и увеличение доли высокосернистых нефтей в перерабатываемом сырье. Поскольку на Российских нефтеперерабатывающих заводах используются преимущественно импортные катализаторы, является актуальной задачей разработка отечественных высокоактивных катализаторов, которые бы позволяли получать моторные топлива с низким остаточным содержанием серы при снижении температуры процесса гидроочистки.

Известно большое количество катализаторов гидроочистки углеводородного сырья, однако вследствие ухудшения качества сырья и ужесточения экологических требований к моторным топливам, их активность в превращении серосодержащих соединений уже не удовлетворяет современным требованиям.

В последние годы для приготовления катализаторов гидроочистки используют метод нанесения активных металлов на уже сформованный носитель. В качестве носителя чаще всего используют оксид алюминия с определенным размером и формой гранул и определенными текстурными характеристиками.

Катализаторами гидроочистки дизельного топлива, как правило, являются системы, содержащие оксиды молибдена и никеля или кобальта, нанесенные на инертную подложку. Так, например, известен катализатор гидрообессеривания [RU 2002124681, C10G45/08, B01J23/887, 16.09.2002], содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что имеет в своем составе, мас.%: оксид кобальта 3,0-9,0, оксид молибдена 10,0-24,0, оксид алюминия остальное, удельную поверхность 160-250 м2/г, объемную механическую прочность на раздавливание 0,6-0,8 кг/мм2. При этом процесс гидроочистки ведут при температуре 310-340°С, давлении 3,0-5,0 МПа, при соотношении водород/сырье 300-500 нм33 и объемной скорости подачи сырья 1,0-4,0 ч-1. Основным недостатком такого катализатора гидроочистки является высокое содержание серы в получаемых продуктах.

Введение в состав катализатора предшественников активных металлов Co, Ni, Mo и/или W осуществляют путем пропитки сформованного носителя водными растворами их солей. При этом чаще всего используют совместное нанесение активных металлов из растворов, стабилизированных различными органическими или неорганическими агентами [RU 2073567, B01J 37/02, 05.10.1995; RU 2216404, B01J 37/02, 20.11.2003; RU 2306978, B01J23/88, 27.09.2007], хотя также может быть использована и пропитка с нанесением активных металлов в несколько стадий [RU 2242501, C10G 45/08, 20.12.2004; RU 2246987, B01J 37/02, 27.02.2005].

С целью повышения каталитической активности катализаторов при их приготовлении используют носитель с улучшенными текстурными характеристиками, при этом удельная поверхность катализатора достигает 300 м2/г, а средний диаметр пор лежит в интервале 7-13 нм, что обеспечивает хороший доступ гидроочищаемых молекул к активным центрам катализатора. Известен носитель и способ приготовления носителя, описанный в патенте [US 6174432, B01J21/02, 16.01.2001], согласно которому сначала получают гидроксид алюминия по следующей многостадийной схеме: 1 стадия – осаждения водного раствора алюмината натрия раствором сульфата алюминия при рН 7 и 60°C, 2 стадия – фильтрация, 3 стадия – отмывка 0,3% водным раствором аммиака, 4 стадия – добавление 10% водного раствора аммиака до рН 11, 5 стадия – перемешивание при 90°C в течение 25 ч, 6 стадия – добавление 5 н. водного раствора азотной кислоты до рН 2, 7 стадия – перемешивание 15 мин, 8 стадия – добавление 10% водного раствора аммиака до рН 11, 9 стадия – фильтрация и промывка водой. Далее полученный гидроксид алюминия смешивают с определенным количеством водного раствора борной кислоты, формуют, сушат при 110°C 10 ч и прокаливают 2 ч при 800°C. В результате получают носитель, содержащий 1-12% бора в пересчете на оксид. После пропитки носителя раствором парамолибдата аммония и нитрата никеля, сушки при 110°C и прокалки при 500°C получен катализатор, имеющий величину удельной поверхности 70-130 м2/г, средний диаметр пор 19-25 нм, объем пор 0,65-0,8 см3/г. Описанный носитель и способ приготовления носителя являются технологически очень сложными, при этом получаемый носитель имеет неоптимальные текстурные характеристики – низкую величину удельной поверхности и завышенный сверх необходимости диаметр пор. Как следствие, приготовленный на его основе катализатор имеет низкую активность в гидроочистке.

Использование различных модифицирующих агентов, например, кремния и бора, позволяет увеличить каталитическую активность в реакциях гидрообессеривания, гидродеазотирования и гидрирования за счёт изменения текстурных и кислотных свойств катализатора. Увеличение доли модифицирующих компонентов в составе алюмооксидного носителя может привести к изменению механических свойств образца, а также созданию на поверхности чрезмерного количества кислотных центров, которое приведёт к снижению каталитической стабильности вследствие ускоренного отложения кокса.

Наиболее распространённым способом введения модификаторов в катализатор является их включение в состав носителя на стадии формования. Так например, известно множество катализаторов [RU 2534997, B01J37/02, 10.12.2014; RU 2534998 , B01J23/882, 10.12.2014; RU 2007115098, B01J21/12, 10.11.2008; CN 200380105512, B01J21/12, 28.11.2002; WO 2006032782A1, B01J21/12, 30.03.2006; RU 2472585, B01J23/882, 20.01.2013], носители для которых готовятся путем смешения сухих порошков соединений модификаторов и связующего компонента с последующей экструзией и термообработкой. Известны катализаторы, в которых модификаторы вводятся совместно с активными металлами [RU 2573561, B01J23/882, 20.01.2016; RU 2008120436, B01J23/08, 27.11.2009; RU 2313392, B01J37/02, 27.12.2007].

Также известны носители для катализаторов гидроочистки, в которых к порошку псевдобемита добавляется раствор кремнийсодержащего модификатора на стадии приготовления формовочной массы. Так например, известен катализатор гидроочистки [CN102872891B, B01J27/19, 15.07.2011], приготовление носителя для которого включает в себя перемешивание порошка псевдобемита и порошка порообразователя в течение 5-10 минут до однородного состояния, приготовление раствора кремнезоля, добавление раствора кремнезоля в формовочную массу и перемешивание до равномерного распределения модификатора. После этого добавление раствора пептизирующих агентов (лимонной кислоты, уксусной кислоты и аммиака) и перемешивание. Формование производится через фильеру в форме трилистника диаметром 1,6 мм с последующим прокаливанием. Соотношение SiO2/Al2O3 в носителе составляет 6-13.

В [CN102284300A, B01J27/19, 21.06.2010] описан катализатор получения низко-сернистого дизельного топлива, содержащий в своем составе W-Mo-Ni-P активный компонент, %мас.: WO3 – 5-25, MoO3 8-20, NiO – 2-9, P – 1,0-5 и добавки 0,2-10% щелочных, щелочноземельных или редкоземельных металлов к кремний-алюминиевому носителю. Массовое соотношение SiO2/Al2O3 в носителе – 6-13, ледяная уксусная кислота/Al2O3 – 0,02-0,06, лимонная кислота/Al2O3 – 0,01-0,04, аммиак/Al2O3 – 0,30-0,80, порообразователь/Al2O3 – 0,01-0,04. Приготовление носителя включает в себя перемешивание порошка псевдобемита и порошка порообразователя в течение 5-10 минут до однородного состояния, приготовление раствора кремнезоля, добавление раствора кремнезоля в формовочную массу и перемешивание до равномерного распределения модификатора. После этого добавление растворов лимонной кислоты, уксусной кислоты и аммиака и перемешивание. Формование производится через фильеру в форме трилистника диаметром 1,6 мм с последующей сушкой в течение 4 часов при 80-130°С и прокаливанием в течение 3 часов при 550°С.

Общим недостатком для вышеперечисленных катализаторов, является их низкая активность в гидроочистке углеводородного сырья, обусловленная неоптимальным способом приготовления.

Наиболее близкими к предлагаемому техническому решению является способ приготовления катализатора, описанный в патенте [RU 2689735, B01J23/882, C10G 45/04, 30.05.2019], заключающийся в пропитке носителя водным раствором, одновременно содержащим биметаллические комплексные соединения [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и Co2[H2P2Mo5O23] с последующей сушкой, при этом концентрации компонентов раствора обеспечивают получение катализатора, который содержит, мас.%: [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 7,7-32,0; Co2[H2P2Mo5O23] – 11,1-29,0, носитель – остальное, при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0; γ-Al2O3 – остальное. Получаемый катализатор имеет удельную поверхность 120-190 м2/г, объём пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырёхлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. После сульфидирования по известным методикам катализатор содержит, мас.%: Mo – 10,0-16,0; Со – 2,7-4,5; P– 0,8-1,8; S – 6,7-10,8; носитель – остальное.

Основным недостатком получаемого катализатора является низкая активность в гидроочистке углеводородного сырья. Катализатор, получаемый известным способом, содержит бор в форме бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм. При этом борат алюминия со структурой норбергита, образующийся на стадии прокалки гранулированного носителя способствует получению носителя, объем и размер пор которого обеспечивают доступ всех подлежащих превращению молекул углеводородного сырья к активному компоненту. Кроме того, борат алюминия со структурой норбергита способствует минимизации нежелательного химического взаимодействия между активными металлами (Со и Мо) и носителем.

Однако, в катализаторе, приготовленном известным способом, борат алюминия Al3BO6 содержится в носителе и далее в катализаторе в форме крупных частиц, поверхность которых на стадиях грануляции и нанесения активных металлов полностью блокируется оксидом алюминия, соединениями кобальта и молибдена. Бор никак не влияет на кислотные характеристики готового катализатора и никак не участвует в катализе. В последние годы установлено, что увеличение поверхностной кислотности катализаторов способствует возрастанию деазотирующей и обессеривающей активности [Catalysis Today 292 (2017) 58-66; Applied Catalysis A: General 530 (2017) 132-144]. Увеличение кислотности катализатора приводит к увеличению его активности как за счет участия поверхностных Бренстедовских центров в катализе реакций деазотирования, так и за счет увеличения дисперсности сульфидных частиц и повышения их активности в обессеривании. Соответственно, катализатор, приготовленный известным способом, имеет низкую кислотность и, как следствие, относительно низкую активность в деазотировании и обессеривании.

Изобретение решает задачу создания улучшенного способа приготовления катализатора гидроочистки, характеризующегося:

1. Оптимальным химическим составом используемого носителя, содержащего в своем составе аморфную фазу диоксида кремния SiO2 с размером частиц 3-20 нм с концентрацией 2,0-20,0 мас.% и борат алюминия Al3BO6 со структурой норбергита с концентрацией 5,0-25,0 мас.%.

2. Оптимальной текстурой используемого носителя, которая определяется тем, что содержащиеся в нем частицы диоксида кремния SiO2 имеют размер от 3 до 20 нм и частицы бората алюминия Al3BO6 со структурой норбергита имеют размеры от 10 до 200 нм, что обеспечивает дальнейшее получение катализатора, имеющего удельную поверхность 120-180 м 2 /г, объем пор 0,30-0,50 см3 /г, средний диаметр пор 7-12 нм, и представляющего собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

3. Оптимальными условиями нанесения комплексных соединений [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и Со22Р2Мо5О23] с последующей сушкой, обеспечивающими сохранение в составе катализатора аморфной фазы диоксида кремния SiO2 с размером частиц 3-20 нм и бората алюминия Al3BO6 со структурой норбергита, представляющего собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

4. Оптимальными соотношениями компонентов, обеспечивающими получение катализатора, имеющего следующий химический состав, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 7,7-32,0; Со22Р2Мо5О23] – 11,1-29,0; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0, γ-Al2O3 – остальное.

Технический результат – получение катализатора, имеющего максимальную активность в целевых реакциях, протекающих при гидроочистке смесевого дизельного топлива, содержащего дистилляты вторичных процессов нефтепереработки.

Задача решается способом приготовления катализатора гидроочистки дизельного топлива, который содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 7,7-32,0; Со22Р2Мо5О23] – 11,1-29,0; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0, γ-Al2O3 – остальное.

Задача также решается тем, что используют пропитку носителя по влагоемкости, либо из избытка раствора, при этом пропитку проводят при температуре 15-95°С в течение 5-60 мин при периодическом перемешивании, а после пропитки катализатор сушат на воздухе при температуре 100-200°С.

Катализатор имеет удельную поверхность 120-180 м2/г, объем пор 0,30-0,50 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. После сульфидирования по известным методикам катализатор содержит, мас.%: Мо – 10,0-16,0; Со – 2,7-4,5; P – 0,8-1,8; S – 6,7-10,8; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0, γ-Al2O3 – остальное.

Входящий в состав носителя диоксид кремния SiO2 представляет собой аморфную фазу, имеет частицы размером 3-20 нм. Носитель получен путем добавления раствора кремнезоля к порошку псевдобемита на стадии приготовления формовочной массы. Кремнезоль имеет частицы размером 3-8 нм, значение рН 8,5-9,5, массовую концентрацию диоксида кремния 14-16 мас.%, удельную площадь поверхности 360-700 м2/г.

Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.

Отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является его химический состав, а именно, то, что заявляемый катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 7,7-32,0; Со22Р2Мо5О23] – 11,1-29,0; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0, γ-Al2O3 – остальное. Выход содержания компонентов катализатора за заявляемые рамки приводит к дальнейшему получению катализатора с пониженной активностью.

Вторым отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что он имеет удельную поверхность 120-180 м2/г, объем пор 0,30-0,50 см3/г, средний диаметр пор 7-12 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Технический результат складывается из следующих составляющих:

1. Заявляемый способ приготовления обеспечивает получение катализатора, наличие в составе которого двух биметаллических комплексных соединений [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и Со22Р2Мо5О23] обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидроочистке высокодисперсных частиц наиболее активного компонента – CoMoS фазы типа II.

2. Заявляемый способ приготовления обеспечивает получение катализатора, химический состав которого обуславливает максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья.

3. Использование пропитки и сушки катализатора при заявляемых условиях, обеспечивает сохранение в составе катализатора изначально присутствующих в составе катализатора соединений фосфора, кремния и бора в форме кобальтовой соли дифосфат пентамолибдата Со22Р2Мо5О23], аморфной фазы диоксида кремния SiO2 с размером частиц 3-20 нм и бората алюминия Al2BO6 со структурой норбергита с заявляемой концентрацией обеспечивает уровень кислотности, способствующий максимальному превращению соединений азота, ингибирующих превращение серосодержащих соединений.

Наличие в составе носителя бората алюминия Al3BO6 со структурой норбергита и γ-Al2O3 в заявляемом интервале концентраций подтверждается данными элементного анализа, рентгенофазового анализа (РФА) и просвечивающей электронной микроскопии высокого разрешения (ПЭМВР). По данным РФА на рентгенограммах носителя содержатся характеристические пики γ-Al2O3 37,2; 39,5; 45,7 и 67,1°, вследствие своей высокой интенсивности перекрывающие пики 37,5; 43,5; 63 и 68°, характеристические для бората алюминия Al3BO6 со структурой норбергита [Ceramic International 32 (2006) 365], которые присутствуют на рентгенограммах в виде малоинтенсивных линий, ненамного превышающих уровень шума. Присутствие в составе носителя частиц диоксида кремния SiO2 подтверждается данными ПЭМВР (Фиг.1 – Снимок ПЭМВР носителя с присутствием частиц SiO2). На снимке ПЭМВР наблюдаются частицы аморфного диоксида кремния SiO2, имеющие размеры от 3 до 20 нм, равномерно распределенные по поверхности носителя. Наличие бората алюминия Al3BO6 со структурой норбергита в носителе подтверждается данными ПЭМВР (Фиг. 2). На частицах Al2O3 наблюдаются агломераты пластинчатых частиц с размерами от 10 до 200 нм. При измерении межплоскостных расстояний данные частицы относятся к фазе Al3BO6 . Так, по данным FFT-изображения (представленного во вкладке на Фиг. 2 Снимок ПЭМВР микроструктуры частицы Al3BO6) на ПЭМВР изображении наблюдаются расстояния 3.2 и 2.8 А, угол между ними составляет 53.8°, что соответствует системам плоскостей (201) и (121) в кристаллической решетке Al3BO6.

Описание предлагаемого технического решения:

Готовят носитель, содержащий частицы аморфной фазы диоксида кремния SiO2, бората алюминия Al3BO6 со структурой норбергита и γ-Al2O3.

Берут навеску продукта термической активации гидраргиллита (ПТАГ), со следующими характеристиками: массовая доля рентгеноаморфной фазы, %, не менее 80; доля потери массы при прокаливании при (900±20)°C, % – 10-12; удельная поверхность, м2/г, не менее 120; суммарный объем пор (влагоемкость), см3/г, не менее 0,1; массовая доля гиббсита (гидраргиллита), %, не более 5; массовая доля натрия оксида, %, не более 0,5.

Навеску измельчают на планетарной мельнице до частиц со средним размером 20-50 мкм. Навеску измельченного порошка гидратируют при перемешивании в течение двух часов в нагретых до 50°C слабоконцентрированных растворах азотной кислоты (кислотный модуль 0,03). После чего полученную суспензию фильтруют под вакуумом и многократно промывают дистиллированной водой. В результате получают влажный осадок. Гидротермальную обработку отмытого осадка проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества борной кислоты при температуре раствора выше 100°C. После завершения гидротермальной обработки раствор охлаждают до комнатной температуры, автоклав разгружают, содержимое сосуда репульпируют дистиллированной водой до получения суспензии, пригодной для распылительной сушки. Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку 280°C и непрерывном перемешивании суспензии. Готовый порошок борсодержащего гидроксида алюминия выгружают из стакана циклонного пылеуловителя распылительной сушилки.

Далее готовят формовочную массу в лабораторном смесителе с Z-образными лопастями. Предварительно в химическом стакане готовят раствор кремнезоля таким образом, чтобы количество диоксида кремния SiO2 в растворе соответствовало 2,0-16 мас.% SiO2 в готовом прокаленном носителе. Предварительно в химическом стакане готовят раствор аммиака таким образом, чтобы количество аммиака водного 25% соответствовало аммиачному модулю 0,09. Отмеренное количество полученного порошка борсодержащего гидроксида алюминия загружают в корыто смесителя и при перемешивании добавляют раствор кремнезоля. Массу перемешивают в течение 10 минут для равномерного распределения частиц диоксида кремния и порошка псевдобемита, после чего добавляют раствор аммиака. Масса перемешивается в течение 20 минут, после чего готовую пластичную массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме круга, трилистника или четырехлистника с размером от вершины трилистника до середины основания от 1,0 до 1,6 мм.

Затем проводят термообработку экструдатов, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре (110±10)°C в течение 2-х ч. Термическую обработку проводят в муфельной печи с подачей сжатого воздуха в печь. Экструдаты в фарфоровой чашке помещают в печь и прокаливают при температуре (550±10)°C в течение 4 ч.

Готовый носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0, γ-Al2O3 – остальное, имеет удельную поверхность 240-270 м2/г, объем пор 0,5-0,8 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

В состав носителя входит диоксид кремния SiO2, он представляет собой аморфную фазу и имеет частицы размером 3-20 нм. Носитель был получен путем добавления раствора кремнезоля к порошку псевдобемита на стадии приготовления формовочной массы. Кремнезоль имел частицы размером 3-8 нм, значение рН 8,5-9,5, массовую концентрацию диоксида кремния 14-16 мас.%, удельную площадь поверхности 360-700 м2/г.

Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.

С использованием данного носителя готовят нанесенный катализатор. Сначала готовят пропиточный раствор, содержащий в заданных соотношениях два биметаллических комплексных соединения – кобальтовую соль цитрата молибдена [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и кобальтовую соль дифосфат пентамолибдата Со22Р2Мо5О23]. Для этого отвешивают заданные количества парамолибдата аммония (NH4)6Mo7O24⋅4H2O, кобальта (II) основного карбоната СоСО3⋅mCo(ОН)2⋅nH2O, ортофосфорной кислоты, кислоты лимонной моногидрата. Мерным цилиндром отмеряют заданное количество воды дистиллированной. В колбу наливают отмеренное количество воды и помещают якорь магнитной мешалки. Колбу помещают на нагревательную поверхность магнитной мешалки с подогревом. Устанавливают скорость вращения мешалки 300 об/мин и температуру раствора 60°C. Приливают заданное количество ортофосфорной кислоты, загружают в колбу отмеренное количество кислоты лимонной и перемешивают при визуальном контроле. Затем в колбу к раствору кислоты лимонной добавляют навеску парамолибдата аммония при постоянном перемешивании и поддержании температуры раствора (60±5)°C. Раствор перемешивают до образования однородного прозрачного раствора, содержащего комплексное соединение – цитрат молибдена (VI) (NH4)4[Мо4(C6H5O7)2О11] и дифосфат пентамолибдата H6P2Mo5O23. Навеску кобальта (II) основного карбоната добавляют к ранее полученному водному раствору цитрата молибдена (VI) и дифосфат пентамолибдата. При этом жидкость вспенивается, а ее температура повышается до 70°C. Перемешивание продолжают при (65-70)°C до получения однородного прозрачного раствора темно-вишневого цвета, не содержащего мути, пузырьков и пены. Раствор содержит кобальт и молибден в форме биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], а также кобальт, молибден и фосфор в форме кобальтовой соли дифосфат пентамолибдата Co2[H2P2Mo5O23].

Приготовленный раствор переливают в тарированный мерный цилиндр, после чего объем раствора доводят до заданного количества добавлением дистиллированной воды.

Полученным раствором пропитывают приготовленный носитель, при этом используют либо пропитку носителя по влагоемкости, либо из избытка раствора. Пропитку проводят при температуре 15-90°C в течение 5-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора. После пропитки катализатор сушат на воздухе при температуре 100- 200°C.

В результате получают катализатор, содержащий, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 7,7-32,0; Co2[H2P2Mo5O23] – 11,1-29,0; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0; Al3BO6 – 5,0-25,0; γ-Al2O3 – остальное.

После сульфидирования по известным методикам катализатор содержит, мас.%: Мо – 10,0-16,0; Со – 3,0-4,0; P – 0,8-1,8; S – 6,7-10,8; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0; Al3BO6 – 5,0-25,0; γ-Al2O3 – остальное.

В состав носителя входит диоксид кремния SiO2, он представляет собой аморфную фазу и имеет частицы размером 3-20 нм.

Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Сущность изобретения иллюстрируется следующими примерами:

Пример 1. Согласно прототипу [RU 2689735, B01J23/882, C10G 45/04, 30.05.2019].

Готовят носитель, содержащий борат алюминия Al2BO6 со структурой норбергита и γ-Al2O3. Берут навеску продукта термической активации гидраргиллита (ПТАГ), со следующими характеристиками: массовая доля рентгеноаморфной фазы, %, не менее 80; доля потери массы при прокаливании при (900±20)°С, % – 10-12; удельная поверхность, м2/г, не менее 120; суммарный объем пор (влагоемкость), см3/г, не менее 0,1; массовая доля гиббсита (гидраргиллита), %, не более 5; массовая доля натрия оксида, %, не более 0,5. Навеску измельчают на планетарной мельнице до частиц со средним размером 20 мкм.

Навеску измельченного порошка гидратируют при перемешивании в течение двух часов в нагретых до 50°С слабоконцентрированных растворах азотной кислоты (кислотный модуль 0,03). После чего полученную суспензию фильтруют под вакуумом и многократно промывают дистиллированной водой. В результате получают влажный осадок. Гидротермальную обработку отмытого осадка проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества борной кислоты при температуре раствора выше 100°С. После завершения гидротермальной обработки раствор охлаждают до комнатной температуры, автоклав разгружают, содержимое сосуда репульпируют дистиллированной водой до получения суспензии пригодной для распылительной сушки. Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку 280°С и непрерывном перемешивании суспензии. Готовый порошок борсодержащего гидроксида алюминия выгружают из стакана циклонного пылеуловителя распылительной сушилки.

Далее готовят формовочную массу методом смешения и пептизации полученного порошка в лабораторном смесителе с Z-образными лопастями в присутствии водного раствора аммиака. Раствор аммиака готовили таким образом, чтобы количество аммиака водного 25% составляло 1,5 мл на 40 г порошка после распылительной сушки. Готовую пластичную массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме круга, трилистника или четырехлистника с размером от вершины трилистника до середины основания от 1,0 до 1,6 мм. Затем проводят термообработку экструдатов, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре (110±10)°С в течение 2 ч. Термическую обработку проводят в муфельной печи с подачей сжатого воздуха в печь. Экструдаты в фарфоровой чашке помещали в печь и прокаливают при температуре (550±10)°С в течение 4 ч.

Готовый носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0; γ-Al2O3 – остальное, и имеет удельную поверхность 200-280 м2/г, объем пор 0,6-0,8 см3/г, средний диаметр пор 7-12 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

С использованием данного носителя готовят нанесенный катализатор. Готовят раствор, содержащий кобальтовую соль цитрата молибдена [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и кобальтовую соль дифосфат пентамолибдата Co2[H2P2Mo5O23]. Для этого в 30 мл дистиллированной воды при перемешивании последовательно растворяют 2,92 мл 85%-ного раствора ортофосфорной кислоты, 11,3 г лимонной кислоты C6H8O7; 29,35 г парамолибдата аммония (NH4)6Mo7O24x4H2O и 8,54 г кобальта (II) углекислого основного водного CoCO3⋅mCo(ОН)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 67 мл.

100 г носителя пропитывают по влагоемкости 67 мл раствора биметаллических комплексных соединений [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и Co2[H2P2Mo5O23] при 50°С в течение 25 мин. Затем катализатор сушат на воздухе при 120°С 4 ч.

Катализатор сульфидируют в прямогонной дизельной фракции, содержащей дополнительно 1,5 мас.% сульфидирующего агента – диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье =300 по следующей программе:

- сушка катализатора в реакторе гидроочистки в токе водорода при 140°C в течение 2 ч;

- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

- подача сульфидирующей смеси и увеличение температуры до 240°C со скоростью подъема температуры 25°C/ч;

- сульфидирование при температуре 240°C в течение 8 ч (низкотемпературная стадия);

- увеличение температуры реактора до 340°C со скоростью подъема температуры 25°C/ч;

- сульфидирование при температуре 340°C в течение 8 ч.

В результате получают катализатор, который содержит, мас.%: Мо – 12,5; Со – 3,85; S – 8,3; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 12,0; натрий – 0,03; γ-Al2O3 – остальное.

Катализатор тестируют в гидроочистке смесевого дизельного топлива, приготовленного путем смешения, об.% – 87 – прямогонная дизельная фракция; 11 – легкий газойль каталитического крекинга, 2 – легкий газойль замедленного коксования, содержащего 0,374% серы, 200 ppm азота, имеющего плотность 0,866 г/см3 , интервал кипения 186-360°C, Т95 – 350°C. Условия гидроочистки: объемная скорость подачи сырья – 2,5 ч-1 , соотношение Н2/сырье =500 нм3 Н23 сырья, давление 3,8 МПа, стартовая температура 350°C. Далее температура скачками по 10°C в сутки поднималась до 370°C. В случае недостижения остаточного содержания серы в получаемом дизельном топливе 10 ррм при 370°C, температура скачками по 1°C поднималась до значения, при котором остаточное содержание серы в продукте гидроочистки становилось равным 10 ppm.

Результаты гидроочистки приведены в таблице.

Примеры 2-7 иллюстрируют предлагаемое техническое решение.

Пример 2.

Готовят порошок борсодержащего гидроксида алюминия по методике, описанной в примере 1.

Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями и при перемешивании добавляют 15,3 г раствора кремнезоля, содержащего массовую долю диоксида кремния 15,0 мас.%. Массу перемешивают в течение 10 мин для равномерного распределения частиц диоксида кремния и порошка псевдобемита, после чего добавляют 2,5%-ый раствор аммиака и перемешивают в течение 20 мин. После этого пластичную формовочную массу экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,3 мм. Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C.

В результате получают носитель, содержащий, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0; борат алюминия Al3BO6 со структурой норбергита – 11,8; γ-Al2O3 – остальное. Носитель имеет удельную поверхность 250 м2/г, объем пор 0,58 см3/г, средний диаметр пор 9,8 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм

Катализатор готовят методом пропитки по влагоемкости или из избытка раствора аналогично способу, описанному в примере 1.

Катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 15,4; Co2[H2P2Mo5O23] – 15,3; носитель – остальное; при этом носитель содержит, мас. %: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0; борат алюминия Al3BO6 со структурой норбергита – 11,8; γ-Al2O3 – остальное.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,40 см3/г, средний диаметр пор 10 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм. Входящий в состав катализатора диоксид кремния SiO2 представляет собой аморфную фазу и имеет частицы размером 3-20 нм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас.%: Мо – 12,0; Со – 3,2; P – 1,0; S – 8,1; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0; борат алюминия Al3BO6 со структурой норбергита – 11,8; γ-Al2O3 – остальное.

Далее проводят гидроочистку углеводородного сырья аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 3.

Готовят порошок борсодержащего гидроксида алюминия по методике, описанной в примере 1.

Готовят носитель по методике, описанной в примере 2, за тем исключением, что к порошку псевдобемита добавляют 70,33 г раствора кремнезоля, содержащего массовую долю диоксида кремния 15,0 мас. %.

В результате получают носитель, содержащий, мас. %: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 8,6; борат алюминия Al3BO6 со структурой норбергита – 11,0; γ-Al2O3 – остальное. Носитель имеет удельную поверхность 256 м2/г, объем пор 0,61 см3/г, средний диаметр пор 9,9 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм.

Раствор, содержащий кобальтовую соль цитрата молибдена [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и кобальтовую соль дифосфат пентамолибдата Co2[H2P2Mo5O23], используют для приготовления катализатора по методике, описанной в примере 1.

Катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 15,4; Co2[H2P2Mo5O23] – 15,3; носитель – остальное; при этом носитель содержит, мас. %: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 8,6; борат алюминия Al3BO6 со структурой норбергита – 11,0; γ-Al2O3 – остальное.

Катализатор имеет удельную поверхность 154 м2/г, объем пор 0,41 см3/г, средний диаметр пор 10,7 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм. Входящий в состав катализатора диоксид кремния SiO2 представляет собой аморфную фазу и имеет частицы размером 3-20 нм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас.%: Мо – 12,0; Со – 3,2; P – 1,0; S – 8,1; носитель – остальное; при этом носитель содержит, мас. %: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 8,6; борат алюминия Al3BO6 со структурой норбергита – 11,0; γ-Al2O3 – остальное.

Далее проводят гидроочистку углеводородного сырья аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 4.

Готовят порошок борсодержащего гидроксида алюминия по методике, описанной в примере 1.

Готовят носитель по методике, описанной в примере 2, за тем исключением, что к порошку псевдобемита добавляют 132 г раствора кремнезоля, содержащего массовую долю диоксида кремния 15,0 мас.%.

В результате получают носитель, содержащий, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное. Носитель имеет удельную поверхность 264 м2/г, объем пор 0,62 см3/г, средний диаметр пор 9,6 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм.

Раствор, содержащий кобальтовую соль цитрата молибдена [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и кобальтовую соль дифосфат пентамолибдата Co2[H2P2Mo5O23], используют для приготовления катализатора по методике, описанной в примере 1.

Катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 15,4; Co2[H2P2Mo5O23] – 15,3; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное. Катализатор имеет удельную поверхность 158 м2/г, объем пор 0,41 см3/г, средний диаметр пор 10,7 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм. Входящий в состав катализатора диоксид кремния SiO2 представляет собой аморфную фазу и имеет частицы размером 3-20 нм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас.%: Мо – 12,0; Со – 3,2; P – 1,0; S – 8,1; носитель – остальное; при этом носитель содержит, мас. %: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное.

Далее проводят гидроочистку углеводородного сырья аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 5.

Готовят порошок борсодержащего гидроксида алюминия по методике, описанной в примере 1.

Готовят носитель по методике, описанной в примере 2, за тем исключением, что к порошку псевдобемита добавляют 186,7 г раствора кремнезоля, содержащего массовую долю диоксида кремния 15,0 мас.%.

В результате получают носитель, содержащий, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 20,0; борат алюминия Al3BO6 со структурой норбергита – 9,6; γ-Al2O3 – остальное. Носитель имеет удельную поверхность 267 м2/г, объем пор 0,61 см3/г, средний диаметр пор 9,4 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм.

Раствор, содержащий кобальтовую соль цитрата молибдена [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и кобальтовую соль дифосфат пентамолибдата Co2[H2P2Mo5O23], используют для приготовления катализатора по методике, описанной в примере 1.

Катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 15,4; Co2[H2P2Mo5O23] – 15,3; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 20,0; борат алюминия Al3BO6 со структурой норбергита – 9,6; γ-Al2O3 – остальное. Катализатор имеет удельную поверхность 164 м2/г, объем пор 0,41 см3/г, средний диаметр пор 10,3 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм. Входящий в состав катализатора диоксид кремния SiO2 представляет собой аморфную фазу и имеет частицы размером 3-20 нм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас.%: Мо – 12,0; Со – 3,2; P – 1,0; S – 8,1; носитель – остальное; при этом носитель содержит, мас. %: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 20,0; борат алюминия Al3BO6 со структурой норбергита – 9,6; γ-Al2O3 – остальное.

Далее проводят гидроочистку углеводородного сырья аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 6.

Готовят порошок борсодержащего гидроксида алюминия по методике, описанной в примере 1.

Готовят носитель по методике, описанной в примере 4, за тем исключением, что формовочную массу экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм.

В результате получают носитель, содержащий, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное. Носитель имеет удельную поверхность 266 м2/г, объем пор 0,62 см3/г, средний диаметр пор 9,6 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Раствор, содержащий кобальтовую соль цитрата молибдена [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и кобальтовую соль дифосфат пентамолибдата Co2[H2P2Mo5O23], используют для приготовления катализатора по методике, описанной в примере 1.

Катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 15,4; Co2[H2P2Mo5O23] – 15,3; носитель – остальное; при этом носитель содержит, мас. %: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное. Катализатор имеет удельную поверхность 159 м2/г, объем пор 0,41 см3/г, средний диаметр пор 10,7 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора диоксид кремния SiO2 представляет собой аморфную фазу и имеет частицы размером 3-20 нм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас.%: Мо – 12,0; Со – 3,2; P – 1,0; S – 8,1; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное.

Далее проводят гидроочистку углеводородного сырья аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Пример 7.

Готовят порошок борсодержащего гидроксида алюминия по методике, описанной в примере 1.

Готовят носитель по методике, описанной в примере 4, за тем исключением, что формовочную массу экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга с диаметром описанной окружности 1,6 мм.

В результате получают носитель, содержащий, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное. Носитель имеет удельную поверхность 265 м2/г, объем пор 0,62 см3/г, средний диаметр пор 9,6 нм и представляет собой частицы с сечением в виде круга с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Раствор, содержащий кобальтовую соль цитрата молибдена [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и кобальтовую соль дифосфат пентамолибдата Co2[H2P2Mo5O23], используют для приготовления катализатора по методике, описанной в примере 1.

Катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 15,4; Co2[H2P2Mo5O23] – 15,3; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное. Катализатор имеет удельную поверхность 158 м2/г, объем пор 0,41 см3/г, средний диаметр пор 10,7 нм и представляет собой частицы с сечением в виде круга с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора диоксид кремния SiO2 представляет собой аморфную фазу и имеет частицы размером 3-20 нм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас.%: Мо – 12,0; Со – 3,2; P – 1,0; S – 8,1; носитель – остальное; при этом носитель содержит, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 15,0; борат алюминия Al3BO6 со структурой норбергита – 10,2; γ-Al2O3 – остальное.

Далее проводят гидроочистку углеводородного сырья аналогично примеру 1.

Результаты тестирования катализатора в гидроочистке приведены в таблице.

Таблица – Остаточное содержание серы и азота в продуктах гидроочистки

Номер примера 1 (прототип) 2 3 4 5 6 7
Остаточное содержание серы при 370°С, ppm 18,4 17,0 10,6 9,0 13,4 9,4 9,5
Остаточное содержание азота при 370°С, ppm 8,2 8,3 6,1 5,0 7,2 5,2 5,3

Таким образом, как видно из приведенных примеров, катализатор, полученный предлагаемым способом за счет своего химического состава, имеет высокую обессеривающую и деазотирующую активность, превосходящую активность катализатора, приготовленного по способу-прототипу в гидроочистке дизельного топлива.

Источник поступления информации: Роспатент

Showing 1-10 of 22 items.
25.08.2017
№217.015.d12c

Способ гидроочистки дизельного топлива

Изобретение относится к способам гидроочистки дизельных топлив, основанным на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°C, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч, объемном отношении водород/сырье...
Тип: Изобретение
Номер охранного документа: 0002622040
Дата охранного документа: 09.06.2017
25.08.2017
№217.015.d174

Регенерированный катализатор гидроочистки

Изобретение относится к регенерированному катализатору гидроочистки дизельного топлива, который имеет объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м/г, средний диаметр пор 6-15 нм, включающий в свой состав молибден, кобальт, серу и носитель. При этом молибден, кобальт содержатся в...
Тип: Изобретение
Номер охранного документа: 0002622037
Дата охранного документа: 09.06.2017
26.08.2017
№217.015.e37a

Способ получения малосернистого сырья каталитического крекинга

Изобретение относится к способам получения малосернистого сырья каталитического крекинга. Описан способ получения малосернистого сырья каталитического крекинга, заключающийся в гидроочистке вакуумного газойля с высоким содержанием серы в присутствии гетерогенного катализатора, где используемый...
Тип: Изобретение
Номер охранного документа: 0002626400
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d7

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способам приготовления катализаторов для получения нефтяных дистиллятов с низким содержанием серы. Описан способ приготовления катализатора, заключающийся в пропитке носителя, который содержит, мас.%: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий - не...
Тип: Изобретение
Номер охранного документа: 0002626399
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e44d

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы. Описан катализатор, содержащий, мас. %: [Со(HO)(CHO)][MoO(CHO)] 33,0-43,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий -...
Тип: Изобретение
Номер охранного документа: 0002626398
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e892

Способ регенерации дезактивированного катализатора гидроочистки

Изобретение относится к способу регенерации дезактивированных катализаторов. Описан способ регенерации дезактивированного катализатора гидроочистки, по которому дезактивированный катализатор прокаливают в токе воздуха либо в слое высотой не более 30 мм, либо во вращающейся барабанной печи с...
Тип: Изобретение
Номер охранного документа: 0002627498
Дата охранного документа: 08.08.2017
19.01.2018
№218.016.0030

Способ получения малосернистого дизельного топлива

Изобретение относится способам получения малосернистых дизельных топлив. Описан способ проведения гидроочистки смесевых и прямогонных дизельных фракций с высоким содержанием серы при температуре 340-380°C, давлении 3,5-8,0 МПа, массовом расходе сырья 1,0-2,5 ч, объемном отношении водород/сырье...
Тип: Изобретение
Номер охранного документа: 0002629355
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.114e

Способ приготовления носителя для катализатора гидроочистки

Изобретение относится к способу приготовления носителя для катализаторов гидроочистки, содержащего, мас.%: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-AlO - остальное, при этом входящий в состав носителя борат алюминия АlВО со структурой норбергита...
Тип: Изобретение
Номер охранного документа: 0002633967
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.1155

Носитель для катализатора гидроочистки

Изобретение относится к носителям для катализаторов гидроочистки. Описан носитель для катализатора гидроочистки, содержащий, мас. %: борат алюминия AlBO со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-AlO - остальное, при этом входящий в состав носителя борат алюминия AlBO со...
Тип: Изобретение
Номер охранного документа: 0002633968
Дата охранного документа: 20.10.2017
17.08.2018
№218.016.7c7c

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, включающему в свой состав соединения молибдена, кобальта, бора и алюминия. Катализатор готовят пропиткой носителя, который содержит, мас. %: борат алюминия AlBO со структурой норбергита - 5,0-25,0;...
Тип: Изобретение
Номер охранного документа: 0002663903
Дата охранного документа: 13.08.2018
Showing 1-10 of 114 items.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.230c

Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(СНО)][МоО(СНО)] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, AlO -...
Тип: Изобретение
Номер охранного документа: 0002474474
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.3255

Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы. Описан катализатор, содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002478428
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
27.08.2014
№216.012.f000

Катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса

Изобретение относится к катализаторам, используемым для получения элементарной серы по процессу Клауса. Предлагаемый катализатор получения элементарной серы по процессу Клауса на основе оксида алюминия представляет собой смесь χ-, γ-AlO и рентгеноаморфной фазы оксида алюминия в следующем...
Тип: Изобретение
Номер охранного документа: 0002527259
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fa9b

Платиновый катализатор, способ его приготовления, способ его регенерации и способ получения сульфата гидроксиламина

Изобретение относится к катализаторам для получения сульфата гидроксиламина путем селективного гидрирования оксида азота в сернокислой среде. Данный катализатор содержит платину в количестве 0,3-1 мас.%, нанесенную на непористый или пористый углеродный носитель. При этом нанесенная платина...
Тип: Изобретение
Номер охранного документа: 0002530001
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfd

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534998
Дата охранного документа: 10.12.2014
+ добавить свой РИД