×
30.05.2020
220.018.2273

Результат интеллектуальной деятельности: ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ ПАРА-КСИЛОЛА ДО ТЕРЕФТАЛЕВОЙ КИСЛОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал. Использование: нефтеперерабатывающая и нефтехимическая отрасли промышленности. Достигаемый технический результат заключается в повышении селективности по целевой терефталевой кислоте за счет сформированной системы пор и каналов наноструктурированного композитного носителя, обеспечивающего при окислении молекулярно-ситовой эффект благодаря бимодальному распределению пор по размерам. Высокая удельная площадь поверхности описываемого катализатора и, как следствие, увеличение площади контакта молекул сырья с каталитически-активными центрами, позволяет увеличить конверсию пара-ксилола и выход целевой терефталевой кислоты. 1 табл., 11 пр.

Данное изобретение относится к гетерогенным катализаторам окисления ксилолов и может быть использовано в таких отраслях промышленности, как нефтехимия и нефтепереработка.

Процесс окисления ароматических соединений С-8 традиционно используют в получении терефталевой кислоты, которая является мономером для производства полиэтилентерефталата и полиэфирных волокон.

В качестве катализаторов окисления ксилолов и ароматического сырья используют, в основном, гомогенные каталитические системы. Процесс проводят при повышенных температурах и давлении в среде уксусной кислоты в присутствии солей марганца или кобальта, активированных бромом или его солями. Окислителями являются такие соединения, как пероксид водорода, кислород, воздух. Впервые жидкофазное окисление алкилароматических углеводородов было описано в патенте US 2245528 (А). В патентах US 2833816 (A), RU 2128641 (CI), RU 2171798 (С2), US 656299 (А) описаны различные способы использования метода жидкофазного окисления алкилароматических углеводородов. Исследования в этой области продолжаются и в настоящее время (CN 106187750 (В), US 7348452 (В2), RU 2362762 (С2) RU 2524947 (С2)).

Перспективным способом получения ароматических кислот является процесс гетерогенного каталитического окисления, характеризующийся легкостью отделения катализатора от продуктов реакции и возможностью его повторного использования, что особенно важно в промышленности.

При этом в патентной литературе практически отсутствуют сведения об использовании гетерогенных катализаторов в окислении ароматических углеводородов С-8 до терефталевой кислоты.

В патенте CN 109096090 (А) окисление п-ксилола проводят на гетерогенных каталитических системах, представляющих собой неметаллический углеродный материал. Сырье, растворитель и катализатор равномерно смешивают и пропускают через окислитель, содержащий молекулярный кислород, массовое соотношение катализатора и п-ксилола составляет (0,001-0,12):1. В патенте SU 789505 (А1) каталитической системой является оксид ванадия в количестве 0,4-1,6%. Процесс проводят при атмосферном давлении в реакторе, в который загружается необходимое соотношение алкилароматического углеводорода, катализатора и воздуха. В данных работах окислению подвергается лишь одна из двух метальных групп в молекуле п-ксилола, а образование терефталевой кислоты является побочной реакцией.

В научной литературе есть сведения о возможности использования некоторых твердых носителей в процессе получения терефталевой кислоты окислением п-ксилола. Среди них Al2O3, бентонит, цеолиты различной серии, в том числе ZSM-5, и упорядоченный мезопористый оксид кремния типа МСМ-41.

Так, предложено иммобилизировать соли Mn и Со на бентоните, модифицированном полиамидоаминными дендримерами (Ghiaci М., Mostajeran М., Gil А. // Ind. Eng. Chem. Res. 2012, 51, 15821-15831). Синтезированный таким образом катализатор при соотношении Со:Mn~10:1 показывает хороший выход целевого продукта в присутствии ледяной уксусной кислоты и KBr (в качестве промотора).

Возможность селективного получения терефталевой кислоты с выходом 99% в присутствии гетерогенных каталитических систем была продемонстрирована на примере мостиковых μ3-оксосвязанных полиядерных комплексов Со и Mn, инкапсулированных в полости цеолита Y (Chavan S. А., Srinivas D., Ratnasamy P. // J. Catal. 2001, 204, 409-419). Однако для достижения высоких скоростей реакции и количественных выходов целевого продукта требуется давление воздуха более 6 МПа.

На данный момент перспективными считаются системы на основе цеолита ZSM-5 (Khan N.A., Kennedy Е.М., Dlugogorski В.Z., Adesina А.А., Stockenhuber М. // Catal. Commun. 2014, 53, 42-46) и упорядоченного мезопористого оксида кремния типа MCM-41 (Li Yi., Duan D., Wu M., Li J., Yan Zh., Wang W., Zi G., Wang J. // Chem. Eng. J. 2016, 306, 777-783). В сравнении с ZSM-5 упорядоченный мезопористый оксид кремния типа МСМ-41 обладает мезопористой структурой, облегчающей диффузию углеводородного сырья к активным центрам катализатора и приводящей к увеличению конверсии ксилолов.

Наиболее близким аналогом к настоящему изобретению является работа по окислению п-ксилола на катализаторах М-МСМ-41, где M=Fe (Li Yi., Duan D., Wu M., Li J., Yan Zh., Wang W., Zi G., Wang J. // Chem. Eng. J. 2016, 306, 777-783). Каталитическую систему получают пропиткой носителя раствором соли металла с последующей сушкой и прокалкой на воздухе при 550°C в течение 24 часов. В качестве предшественника каталитически активного металла используют нитрат железа (II). Готовый катализатор содержит от 1 до 2% масс. переходного металла в пересчете на общую массу каталитической системы. Окисление проводят в реакторе периодического действия, в который последовательно загружают п-ксилол, катализатор, смешанный растворитель, содержащий уксусную кислоту, ацетонитрил в соотношении 2:8 и воду, при температуре 80°C, атмосферном давлении, времени реакции 5 ч. В указанных условиях конверсия субстрата составляет 10,1%, а селективность по терефталевой кислоте достигает 3,1%. Известный катализатор обладает низкой эффективностью, связанной с морфологическими особенностями, в том числе с мономодальным распределением пор по размерам, а также недостаточно высокой площадью поверхности катализатора.

Проблема, на решение которой направлено настоящее изобретение, заключается в создании гетерогенного катализатора окисления пара-ксилола до терефталевой кислоты, обладающего повышенной эффективностью, в частности, более высокой активностью, приводящей к увеличению конверсии сырья и выхода целевой терефталевой кислоты.

Указанная проблема решается созданием гетерогенного катализатора окисления пара-ксилола до терефталевой кислоты, состоящего из носителя, содержащего, % масс.:

- упорядоченный мезопористый
оксид кремния типа МСМ-41 20,0-70,0
- алюмосиликатные нанотрубки 30,0-80,0

и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал.

Достигаемый технический результат заключается в повышении селективности по целевой терефталевой кислоте, минимизации выходов побочных продуктов (4-карбоксибензальдегид, терефталевый альдегид, пара-толуиловая кислота, пара-толуиловый альдегид) за счет сформированной системы пор и каналов структурированного композитного носителя, обеспечивающего при окислении молекулярно-ситовой эффект благодаря бимодальному распределению пор по размерам. Высокая удельная площадь поверхности описываемого катализатора и, как следствие, увеличение площади контакта молекул сырья с каталитически-активными центрами, позволяет увеличить конверсию пара-ксилола и выход целевой терефталевой кислоты.

Описываемый катализатор получают следующим образом.

К водной дисперсии природных или синтетических алюмосиликатных нанотрубок с общей формулой Al2Si2(OH)4*nH20, где n равно 0-2, добавляют галогенид цетилтриметиламмония и кремниевый прекурсор, в качестве которого используют, например, пирогенный оксид кремния, силикат натрия или тетраэтилортосиликат. Полученную смесь доводят до щелочной среды в присутствии неорганического основания, водного аммиака. Образовавшийся гель выдерживают при температуре 80-140°C в течение 12-72 часов в закрытой емкости, после чего осадок отфильтровывают, промывают до отсутствия галогенид-ионов в маточном растворе, сушат при 60-120°C в течение 6-48 часов и прокаливают на воздухе при температуре 450-650°C. В результате получают носитель представляющий собой единый структурированный композитный материал - композит, состоящий из упорядоченного мезопористого оксида кремния, армированного алюмосиликатными нанотрубками. На полученный носитель наносят оксиды металлов Mn, Со, Fe, Cu, Pd или их смесь в количестве 0,5-15,0% от массы катализатора, более предпочтительны оксиды Со и Mn.

Окисление пара-ксилола проводят в среде уксусной кислоты в реакторе периодического действия в диапазоне температур 150-250°C, диапазоне давлений окислителя (кислород или воздух) 0,5-10,0 МПа, массовом соотношении субстрат/катализатор, равном 1-10:1, мольном соотношении пара-ксилол/бромид калия, равном 50-150:1, объемном соотношении окислитель/пара-ксилол, равном 50-250:1 (н.у.), в течение 1-5 часов.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающие его.

Пример 1

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 70,0, алюмосиликатных нанотрубок - 30,0 и оксид кобальта, нанесенный на носитель в количестве 15,0% от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении воздуха 1,0 МПа, массовом соотношении субстрат/катализатор 1:1, мольном соотношении пара-ксилол/бромид калия 50:1, объемном соотношении окислитель/пара-ксилол 250:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 78,5%, селективность по терефталевой кислоте - 5,6%. Результаты приведенного опыта и опытов, описанных в последующих примерах, приведены в таблице.

Пример 2

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксид марганца, нанесенный на носитель в количестве 0,5% от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 150°C, давлении воздуха 5,0 МПа, массовом соотношении субстрат/катализатор 6:1, мольном соотношении пара-ксилол/бромид калия 120:1, объемном соотношении окислитель/пара-ксилол 180:1 (н.у.). Время реакции 4 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 61,3%, селективность по терефталевой кислоте - 4,6%.

Пример 3

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 30,0, алюмосиликатных нанотрубок - 70,0 и оксиды железа и марганца, нанесенные на носитель в количестве 2,6 и 1,3%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 150°C, давлении кислорода 0,5 МПа, массовом соотношении субстрат/катализатор 10:1, мольном соотношении пара-ксилол/бромид калия 150:1, объемном соотношении окислитель/пара-ксилол 50:1 (н.у.). Время реакции 1 час. При этом получают следующие результаты: конверсия пара-ксилола составляет 81,4%, селективность по терефталевой кислоте - 15,8%.

Пример 4

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды меди и палладия, нанесенные на носитель в количестве 8,7 и 6,1%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 180°C, давлении кислорода 1,0 МПа, массовом соотношении субстрат/катализатор 2:1, мольном соотношении пара-ксилол/бромид калия 60:1, объемном соотношении окислитель/пара-ксилол 70:1 (н.у.). Время реакции 2 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 54,2%, селективность по терефталевой кислоте - 19,1%.

Пример 5

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 20,0, алюмосиликатных нанотрубок - 80,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 14,5 и 0,5%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 180°C, давлении кислорода 2,0 МПа, массовом соотношении субстрат/катализатор 4:1, мольном соотношении пара-ксилол/бромид калия 130:1, объемном соотношении окислитель/пара-ксилол 190:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 87,2%, селективность по терефталевой кислоте - 82,9%.

Пример 6

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 8,8 и 0,8%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении кислорода 2,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 98,7%, селективность по терефталевой кислоте - 86,2%.

Пример 7

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 6,9 и 0,8%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 250°C, давлении воздуха 10,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 100%, селективность по терефталевой кислоте - 97,6%.

Пример 8

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 8,4 и 1,5%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении кислорода 2,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 5 часов. При этом получают следующие результаты: конверсия пара-ксилола составляет 99,9%, селективность по терефталевой кислоте - 88,2%.

Пример 9

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 8,0 и 1,8%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении воздуха 8,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 1 час. При этом получают следующие результаты: конверсия пара-ксилола составляет 99,0%, селективность по терефталевой кислоте - 94,7%.

Пример 10

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 50,0, алюмосиликатных нанотрубок - 50,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 10,3 и 0,6%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 230°C, давлении воздух 9,0 МПа, массовом соотношении субстрат/катализатор 4:1, мольном соотношении пара-ксилол/бромид калия 110:1, объемном соотношении окислитель/пара-ксилол 210:1 (н.у.). Время реакции 5 часов. При этом получают следующие результаты: конверсия пара-ксилола составляет 98,6%, селективность по терефталевой кислоте - 82,3%.

Пример 11

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 30,0, алюмосиликатных нанотрубок - 70,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 11,4 и 0,5%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 250°C, давлении кислорода 3,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 90:1, объемном соотношении окислитель/пара-ксилол 220:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 99,8%, селективность по терефталевой кислоте - 87,4%.

Из представленных данных следует, что используемый в приведенных примерах катализатор проявляет высокую активность в реакции окисления пара-ксилола до терефталевой кислоты.

Так, конверсия пара-ксилола составляет 54,2-100%, что примерно на 44-90% выше, чем при использовании известного катализатора; содержание в продукте окисления терефталевой кислоты - 4,6-97,6%, что на 1,5-94,5% выше, чем при использовании известного катализатора.

Использование описываемого катализатора, содержащего компоненты в иных концентрациях, входящих в заявленный интервал, приводит к аналогичным результатам. Использование компонентов в количествах, выходящих за данный интервал, не приводит к желаемым результатам.

Источник поступления информации: Роспатент

Showing 31-40 of 44 items.
20.04.2020
№220.018.15fc

Способ модификации мембран для ультрафильтрации водных сред

Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов в пищевой, фармацевтической, нефтехимической и других отраслях промышленности, при водоподготовке и создании особо чистых растворов. Способ модификации мембран для...
Тип: Изобретение
Номер охранного документа: 0002719165
Дата охранного документа: 17.04.2020
20.04.2020
№220.018.160b

Способ получения синтез-газа

Изобретение относится к высокотемпературным каталитическим окислительным способам превращения метана с получением синтез-газа и может быть использовано в химической технологии. Способ осуществляют путем подачи в реактор, в который помещена каталитическая система, исходной газовой смеси,...
Тип: Изобретение
Номер охранного документа: 0002719176
Дата охранного документа: 17.04.2020
20.04.2020
№220.018.1612

Состав для ликвидации нефтеразливов

Изобретение относится к области охраны окружающей среды и может быть использовано для ликвидации нефтеразливов при добыче, транспортировке и хранении углеводородного сырья и продуктов его переработки. Состав для ликвидации нефтеразливов содержит, мас.%: пористый гидрофобизированный...
Тип: Изобретение
Номер охранного документа: 0002719174
Дата охранного документа: 17.04.2020
30.05.2020
№220.018.222f

Катализатор для гидротермального сжижения биомассы растительного происхождения

Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор для гидротермального сжижения биомассы растительного происхождения содержит оксид циркония, оксид...
Тип: Изобретение
Номер охранного документа: 0002722168
Дата охранного документа: 28.05.2020
30.05.2020
№220.018.223e

Катализатор для гидротермального сжижения биомассы растительного происхождения

Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор содержит оксид циркония, оксид церия, оксид ванадия, фосфат алюминия, мелкодисперсный оксид...
Тип: Изобретение
Номер охранного документа: 0002722169
Дата охранного документа: 28.05.2020
30.05.2020
№220.018.22b3

Катализатор для гидротермального сжижения биомассы растительного происхождения

Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор для гидротермального сжижения биомассы растительного происхождения содержит оксид циркония, оксид...
Тип: Изобретение
Номер охранного документа: 0002722305
Дата охранного документа: 28.05.2020
21.06.2020
№220.018.28cc

Способ получения бумаги

Использование: целлюлозно-бумажная промышленность. Сущность: проводят подготовку макулатурного сырья, измельчение подготовленного сырья до степени помола 36-40 ШР с получением волокнистой массы, смешивают упрочняющий агент, представляющий собой водный раствор катионного полимера, с водной...
Тип: Изобретение
Номер охранного документа: 0002723819
Дата охранного документа: 17.06.2020
06.07.2020
№220.018.2fd0

Способ получения покровной композиции для мелованной бумаги

Изобретение относится к способу получения покровной композиции для мелованной бумаги. Способ заключается в смешивании модифицированного продукта и модифицированного связующего. Модифицированный продукт получен смешиванием водной дисперсии нанофибриллярной целлюлозы с пигментом, представляющим...
Тип: Изобретение
Номер охранного документа: 0002725587
Дата охранного документа: 02.07.2020
06.07.2020
№220.018.300b

Способ получения композита на основе микропористого цеолита и карбида кремния

Изобретение относится к технологии получения соединений со свойствами молекулярных сит с катион-обменными свойствами – микро-мезо-макропористым материалам, содержащим в своей структуре кристаллические фазы микропористого цеолита, в частности структуры MFI, и мезо-макропористого карбида...
Тип: Изобретение
Номер охранного документа: 0002725586
Дата охранного документа: 02.07.2020
16.07.2020
№220.018.32c0

Беспилотный летательный аппарат

Изобретение относится к области авиации. Беспилотный летательный аппарат содержит крыло, выполненное по аэродинамической схеме «летающее крыло», органы управления, выполненные в виде вертикального оперения и размещенного на опоре переднего горизонтального оперения, силовую установку, оснащенную...
Тип: Изобретение
Номер охранного документа: 0002726511
Дата охранного документа: 14.07.2020
Showing 31-40 of 147 items.
25.08.2017
№217.015.b065

Способ изготовления изделий из стеклопластика с антистатическими свойствами поверхности

Изобретение относится к способу изготовления композитных материалов, а именно стеклопластиков и изделий из них, с электропроводным защитно-декоративным покрытием диэлектрической основы Способ изготовления изделий из стеклопластика с антистатическими свойствами поверхности характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002613510
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b561

Штамм базидиального гриба trametes hirsuta - продуцент этилового спирта

Изобретение относится к биотехнологии. Штамм базидиального гриба Trametes hirsuta МТ-24.24 обладает способностью продуцировать этиловый спирт. Штамм базидиального гриба Trametes hirsuta депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером ВКПМ F-1288...
Тип: Изобретение
Номер охранного документа: 0002614263
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.ca66

Способ обессеривания сланцевой нефти и каталитическая окислительная композиция для обессеривания сланцевой нефти

Изобретение относится к способу обессеривания сланцевой нефти и к каталитической окислительной композиции, используемой в данном способе. Способ включает смешивание сланцевой нефти в органическом растворителе, при этом на одну часть сланцевой нефти берут не менее 9 частей органического...
Тип: Изобретение
Номер охранного документа: 0002619946
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cabb

Способ получения высококачественной синтетической нефти

Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей через сита до...
Тип: Изобретение
Номер охранного документа: 0002620087
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cad0

Штамм базидиомицета fomitopsis pinicola вкпм f-1285 - продуцент липидов

Изобретение относится к биотехнологии. Штамм базидиомицета Fomitopsis pinicola МТ-5.21 обладает способностью продуцировать липиды в условиях погруженного культивирования, с высоким содержанием липидной фракции. Штамм Fomitopsis pinicola депонирован во Всероссийской Коллекции Промышленных...
Тип: Изобретение
Номер охранного документа: 0002620078
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.d856

Способ переработки тяжелого нефтяного сырья

Настоящее изобретение относится к способу переработки тяжелого нефтяного сырья путем смешения указанного сырья с твердым железосодержащим отходом металлообработки с размерами частиц не более 100 мкм и асфальтосмолопарафиновыми отложениями - отходом процесса добычи нефти, взятыми в количестве...
Тип: Изобретение
Номер охранного документа: 0002622650
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.e3a4

Способ переработки серосодержащего нефтешлама с высоким содержанием воды

Изобретение относится к способу переработки серосодержащего нефтешлама с высоким содержанием воды, включающему предварительное смешение нефтешлама с углеводородным растворителем, активирование полученного продукта воздействием на последний электромагнитным излучением с частотой 40-55 МГц,...
Тип: Изобретение
Номер охранного документа: 0002626240
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.ed74

Способ получения альдегидов гидроформилированием с модификацией лигандов ацетализацией

Изобретение относится к способу получения альдегидов гидроформилированием с модификацией лигандов ацетализацией. Предлагаемый способ включает следующие стадии: - смешивание в автоклаве этилового спирта (А), ацетилацетоната дикарбонила родия Rh(acac)(CO) (Б), при соотношении Б:А от 1:6000 до...
Тип: Изобретение
Номер охранного документа: 0002628609
Дата охранного документа: 21.08.2017
26.08.2017
№217.015.eda7

Способ получения фурановых соединений из углеводов, целлюлозы или лигноцеллюлозного сырья

Изобретение относится к области получения жидких органических веществ из лигноцеллюлозного сырья и углеводов, а именно к способу получения фурановых соединений, заключающемуся в том, что углеводы, целлюлозу или предобработанное с помощью гамма-облучения и/или окисления лигноцеллюлозное сырье...
Тип: Изобретение
Номер охранного документа: 0002628802
Дата охранного документа: 22.08.2017
29.12.2017
№217.015.fb29

Катализатор гидропереработки нефтяных фракций (варианты)

Изобретение относится к производству катализаторов для гидропереработки нефтяных фракций, в том числе обессеривания, гидрогенизации и гидродеароматизации. Предложен катализатор гидропереработки нефтяных фракций, полученный in situ путем термического разложения в углеводородном сырье - нефтяных...
Тип: Изобретение
Номер охранного документа: 0002640210
Дата охранного документа: 27.12.2017
+ добавить свой РИД