×
22.05.2020
220.018.1fd1

Результат интеллектуальной деятельности: Многоволновый фотовозбуждаемый тонкопленочный органический лазер

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Многоволновый фотовозбуждаемый тонкопленочный органический лазер содержит источник оптической накачки, лазерно-активный элемент в виде подложки, на которую нанесен дополнительный слой, обеспечивающий условия полного внутреннего отражения для длины волны генерации и одновременную адгезию к подложке органической лазерно-активной среды, состоящей из органического люминофора, растворенного в полимере. При этом лазерно-активный элемент состоит из нескольких подобных лазерно-активных элементов, выполненных с разными люминофорами, сложенных в стопу и разделенных между собой воздушными промежутками, равными или большими наибольшей длине волны генерации. Технический результат заключается в обеспечении возможности получения одновременного излучения на нескольких длинах волн от одного источника накачки. 4 з.п. ф-лы, 3 ил.

Уровень техники

Типичные лазеры генерируют излучение с одной определенной длиной волны. Однако в некоторых случаях требуются многолучевые источники когерентного излучения с набором различных длин волн излучающихся одновременно.

Известно устройство [1], представляющее собой твердотельный многоволновой лазерный излучатель (длины волн генерации 1064, 532 и 355 нм), интегрированный в едином исполнении с телескопом, для применения в аэрозольных лидарах. Основой излучателя является задающий лазер и усилитель на основе кристалла YAG:Nd3+, который возбуждается лазерными диодными матрицами. В режиме модуляции добротности энергия выходных импульсов YAG:Nd3+ лазерного излучателя достигает 400 мДж (1064 нм). При одновременной генерации трех длин волн излучатель формирует импульсы излучения на длинах волн 1064, 532 и 355 нм с энергиями 170, 150 и 80 мДж соответственно. Длительность импульсов составляет 8-11 нс при частоте следования 10 Гц.

Для аналога характерны следующие недостатки: невозможность варьирования длины волны излучения; генерирование излучения на строго определенных длинах волн; эффективность генерации гармоник существенно зависит от параметров генерации основной частоты (1064 нм). Кроме того, необходимо обеспечить высокое качество выходного излучения для накачки каждого последующего каскада. Такие лазерные системы сложны в настройке нелинейных кристаллов для получения наибольшей эффективности. Также известна работа [2], в которой предложен новый тип газовых импульснопериодических лазеров, позволяющих генерировать мощное лазерное излучение на отдельных линиях в различных диапазонах спектра (от 0,2 до 10,6 мкм), а также одновременно в ИК и УФ областях. При этом возможно получать генерацию на разных длинах волн не только при смене активной молекулы, но и при одновременном использовании двух или более активных молекул в газовой смеси. Также в работе [3] при исследовании генерации эксимерного XeCl лазера отмечался еще один возможный случай двухволновой генерации- на молекулах эксимера ХеС1 и атомарном ксеноне, а в работе [4] одновременная генерация на HF и DF.

Для приведенных аналогов характерен ряд недостатков. Известно, что обеспечение условий накачки эксимерных смесей в газовом разряде ограничено узким интервалом давления и состава газовой смеси, а в эксимерных лазерах источником накачки является однородный поперечный газовый разряд. Кроме того, необходимо обеспечить ряд требований к источнику электрической накачки, т.е. к импульсному генератору наносекундного диапазона. Все это ограничивает спектральный диапазон линий генерации и их эффективности излучения. Все лучи сосредоточены по одной оптической оси.

Наиболее близкий аналог (прототип) это устройство описанное в [5]. Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакриалата содержит оптический источник накачки, органическую лазерно-активную среду из полиметилметакрилата и органического люминофора, растворенного в нем и нанесенного на стеклянную подложку. В лазере присутствует дополнительный слой между активной средой и стеклянной подложкой, обеспечивающий условия полного внутреннего отражения для длины волны генерации и одновременную адгезию к подложке органической лазерно-активной среды. Несмотря на то, что он позволяет получить эффективную генерацию с использованием различных лазерно-активных сред излучающих различные длины волн, прототип обладает существенным недостатком – генерация излучения в нем осуществляется на одной длине волны.

Технический результат, на достижение которого направлено предлагаемое решение:

– получение одновременного излучения нескольких спектральных длин волн лазерного излучения от одного источника накачки;

– оперативное изменение спектра длин волн генерации.

Сущность изобретения

Решение поставленной задачи достигается тем, что в предлагаемом устройстве многоволнового фотовозбуждаемого тонкопленочного органического лазера, состоящего из источника накачки, лазерно-активного элемента в виде подложки, на которую нанесена плёнка из органического люминофора, растворенного в полимере. Под пленкой находится дополнительный слой, который обеспечивает условия полного внутреннего отражения для длины волны генерации и одновременную адгезию к подложке органической лазерно-активной среды. В отличие от прототипа предлагаемый излучающий лазерно-активный элемент состоит из нескольких отдельных лазерно-активных элементов, каждый из которых состоит из тонкопленочной лазерно-активной среды на основе люминофора в полимере и нанесенной на свою прозрачную для длины волны накачки подложку с дополнительным слоем. Отдельные лазерно-активные элементы сложены в стопу и разделены между собой воздушными промежутками, равными или больше наибольшей длине волны генерации. Источник накачки выбирается из ряда лазерных и не лазерных источников излучения, способных накачать лазерно-активную среду выше порога генерации.

Технический результат заключается в получении генерации нескольких спектральных длин волн лазерного излучения от одного источника накачки и в возможности оперативного изменения спектра генерации.

Для пояснения предполагаемого изобретения предложен чертеж Фигура 1. – Схематическое изображение многоволнового фотовозбуждаемого тонкопленочного органического лазера, где 1 – прозрачная подложка; 2 – адгезионный слой; 3– тонкопленочная лазерно-активная среда; 4-прокладка, 5, 6, 7- выходное излучение, 8-источник накачки.

Многоволновый фотовозбуждаемый тонкопленочный органический лазер состоит из источника накачки (8), который может быть лазерным и не лазерным, излучающим в видимом диапазоне и способный накачать лазерно-активную среду выше порога генерации. Оптический лазерный элемент представляет собой набор состоящий из отдельных лазерно-активных элементов выполненных с использованием разных люминофоров сложенных в стопу и разделенных между собой воздушными промежутками посредством прокладок (4) толщиной не меньше длины волны генерируемого средой лазерного излучения для предотвращения явления оптического контакта. Каждый отдельный лазерно-активный элемент состоит из прозрачной подложки (1), которая может быть выполнена из стекла и не требует прецизионной оптической обработки благодаря адгезионному слою (2), выполненному из гидрализованного тетраэтоксисилана. Сверху нанесен тонкопленочный лазерно-активный слой люминофора в полимере полиметилакрилата (ПMMA) (3). Такая конструкция отдельного лазерно-активного элемента при поперечном фото-возбуждении представляет собой планарный волновод, по которому распространяется излучение генерации. Концентрация люминофоров и уровень мощности накачки подбираются таким образом, чтобы при накачке выполнялись условия генерации не только для первого отдельного лазерно-активного элемента, но и для каждого последующего находящегося в стопе. Излучение генерации выходит из торцов планарных волноводов.

Устройство работает следующим образом: при фотовозбуждении тонкопленочной лазерно-активной среды (3) от источника накачки (8) возникает генерация и распространяется в планарном волноводе, образованном дополнительным слоем (2), активной средой и воздушным промежутком; т. к. активная среда представляет собой тонкую пленку люминофора в полимере, то часть не поглощенной энергии накачки проходит сквозь прозрачную, для длины волны накачки подложку (1) первого отдельного лазерно-активного элемента, попадает на второй, затем на третий и т. д., накачивая их выше пороговой генерации. Вывод полезного сигнала (5,6,7) осуществляется с торцов планарных волноводов лазерно-активных элементов.

Авторами изготовлены четыре отдельных лазерно-активных элемента для демонстрации многолучевого тонкопленочного фотовозбуждаемого органического лазера на основе пиррометена 567, пиррометена 597, хромена-3 и дистирилбензола. Каждая из лазерно-активных сред наносилась на адгезивный слой, который в свою очередь был нанесен на стеклянную подложку 2×2 см. Отдельные лазерно-активные элементы сложены в стопу и разделены между собой воздушным промежутком посредством размещения прокладок из тефлоновой пленки толщиной 0,25 мм, фигура 1. Оперативное изменение длины волны генерации производится заменой отдельного лазерно-активного элемента в стопе. Накачка многолучевого тонкопленочного фотовозбуждаемого органического лазера осуществлялась на установке, приведенной на фигуре 2. Авторы использовали два варианта стоп оптических лазерно-активных элементов состоящих из двух различных наборов отдельных лазерно-активных элементов на основе пиррометена 567, пиррометена 597, хромена-3 и дистирилбензола. Накачка осуществляется в поперечном варианте третьей гармоникой АИГ-Nd3+ лазера с энергией в импульсе до 10 мДж, длительностью импульса 10 нс, частотой повторения до 10 Гц. Спектр излучения регистрировался лазерным спектрометром 3 AvaSpec-2048ULS (Avantes), энергия излучения измерителями Gentec EO ED-100A-UV и Ophir NOVA II.

Фигура 2 – Схема экспериментальной установки: 1 –АИГ-Nd3+-лазер, 2 – система неселективных светофильтров, 3 – Gentec EO ED-100A-UV, 4 – светоделительная пластина, 5 – система цилиндрических линз, 6 – диафрагма, 7 – многоволновый фотовозбуждаемый тонкопленочный органический лазер, 8 – оптоволокно, 9 – спектрометр, 10 – Ophir NOVA II, 11 – персональный компьютер

На Фигуре 3 представлены спектры генерации многолучевого органического лазера:

а) 1 – длина волны генерации (556 нм) лазерной среды на основе пиррометена 567 (PM 567), 2 – длина волны генерации (576 нм) лазерной среды на основе пиррометена 597 (PM 597), 3 – длина волны генерации (607 нм) лазерной среды на основе хромена-3.

б) 1 – длина волны генерации (410 нм) лазерной среды на основе дистирилбензола, 2 – длина волны генерации (576 нм) лазерной среды на основе пиррометена 597 (PM 597), 3 – длина волны генерации (607 нм) лазерной среды на основе хромена-3.

Проведенные испытания показали, что при создании многолучевого тонкопленочного фотовозбуждаемых органического лазера возможно получение нескольких спектральных длин волн лазерного излучения от одного источника накачки и оперативное изменение спектрального состава излучения многолучевого фото-возбуждаемого органического лазера. Таким образом, поставленная цель достигнута.

Список использованной литературы:

1. Рябцев Г.И., Богданович М.В., Григорьев А.В., Кабанов В.В., Костик О.Е., Лебедок Е.В., Лепченков К.В., Осипенко Ф.П., Рябцев А.Г., Чайковский А.П., Щемелев М.А., Титовец В.С. Мощный полностью твердотельный многоволновой лазер для аэрозольных лидаров // Оптический журнал. – 2014. – Т. 81. – № 10. – С. 20-25.

2. Атежев В.В., Букреев B.C., Вартапетов СК., Жуков А.Н., Конов В.И., Прохоров A.M., Савельев А.Д. Многоволновой импульсно-периодический электроразрядный лазер // Краткие сообщения по физике. – 1987. – №. 9. – С. 19-21.

3. Лосев В.Ф. Квантовая электроника В. 6. № 7,1561 – 1979 г

4. Brandelik JE J Appl Phys 51 № 3 1321 – 1980 г

5. Патент РФ № 2666181, МПК H01S 3/213 (2006.01), опубл. 06.09.2018


Многоволновый фотовозбуждаемый тонкопленочный органический лазер
Многоволновый фотовозбуждаемый тонкопленочный органический лазер
Многоволновый фотовозбуждаемый тонкопленочный органический лазер
Многоволновый фотовозбуждаемый тонкопленочный органический лазер
Источник поступления информации: Роспатент

Showing 91-100 of 173 items.
19.01.2018
№218.016.0d08

Способ получения тонкопленочного покрытия на основе сложных оксидных систем

Изобретение относится к технологии получения тонкопленочных материалов на основе сложных оксидных систем, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, строительной индустрии, в качестве декоративных, фильтрующих и перераспределяющих...
Тип: Изобретение
Номер охранного документа: 0002632835
Дата охранного документа: 10.10.2017
19.01.2018
№218.016.0eac

Катализатор и способ раздельного получения водорода и монооксида углерода из метана

Изобретение относится к катализатору для раздельного получения водорода и монооксида углерода из метана. Катализатор состава 5-15% мас. Ni на γ-AlO или SiO промотирован оксидными соединениями ванадия, в пересчете на VO в количестве 5-20% массовых процентов. Также предложен способ раздельного...
Тип: Изобретение
Номер охранного документа: 0002633354
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1082

Улучшенный способ уничтожения личинок комаров

Изобретение относится к области снижения численности кровососущих комаров на личиночной стадии развития. При осуществлении способа уничтожения личинок комаров вносят в водоем восстановитель для связывания растворенного в воде кислорода. Вносят на поверхность воды слой оксида азота. Внесение...
Тип: Изобретение
Номер охранного документа: 0002633778
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1125

Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ

Изобретение относится к области переработки жидких радиоактивных промышленных отходов, в частности матричной иммобилизации. Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ включает смешивание жидких радиоактивных отходов с керамообразующим материалов и застывание...
Тип: Изобретение
Номер охранного документа: 0002633817
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.19bb

Способ приготовления концентрированного питательного раствора хьюитта

Изобретение относится к области биотехнологии и сельского хозяйства, в частности к гидропонике и растениеводству. Способ включает растворение минеральных солей в дистиллированной воде. При этом компоненты, содержащие кальций и магний, используют в количестве, меньшем относительно прописи...
Тип: Изобретение
Номер охранного документа: 0002636468
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.1fe4

Способ получения квазисферических частиц титана

Изобретение относится к получению порошка титана. Способ включает механическую обработку порошка титана в водоохлаждаемой планетарной шаровой мельнице в инертной атмосфере аргона. Используют порошок чистого титана марки ПТОМ-2. Обработку порошка ведут с активацией поверхности частиц порошка при...
Тип: Изобретение
Номер охранного документа: 0002641428
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.1ffd

Способ повышения прочности стабильной аустенитной стали

Изобретение относится к области металлургии. Для повышения прочностных свойств стали при сохранении пластичности за счет получения структуры с высокой плотностью пакетов микродвойников деформации и субмикро- и наноразмерными фрагментами стабильную аустенитную сталь 02Х17Н14М3 подвергают закалке...
Тип: Изобретение
Номер охранного документа: 0002641429
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.205d

Способ получения вольфрамового изделия послойным нанесением вольфрама и устройство для его осуществления

Изобретение относится к металлургии, а именно к фторидной технологии получения сложных по пространственной конфигурации вольфрамовых изделий. Способ получения вольфрамового изделия послойным нанесением вольфрама характеризуется тем, что проводят сканирование изотермически нагретой...
Тип: Изобретение
Номер охранного документа: 0002641596
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20fa

Способ обработки монокристаллов ферромагнитного сплава conial с содержанием ni 33-35 ат.% и al 29-30 ат.%

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора. Способ обработки монокристалла ферромагнитного сплава CoNiAl с содержанием Ni 33-35 ат. % и Al...
Тип: Изобретение
Номер охранного документа: 0002641598
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
Showing 1-4 of 4 items.
20.11.2015
№216.013.918d

Лазерное вещество

Изобретение относится к лазерным веществам на основе органических красителей и может найти применение в лазерной технике при изготовлении твердотельных активных элементов. Предложено лазерное вещество, содержащее (мас.%):...
Тип: Изобретение
Номер охранного документа: 0002568877
Дата охранного документа: 20.11.2015
07.09.2018
№218.016.8385

Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакрилата

Изобретение относится к лазерной технике. Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакриалата содержит оптический источник накачки, органическую лазерно-активную среду из полиметилметакрилата и органического люминофора, растворенного в нем и нанесенного на...
Тип: Изобретение
Номер охранного документа: 0002666181
Дата охранного документа: 06.09.2018
16.08.2019
№219.017.c062

Фотовозбуждаемый лазерный интегрально-оптический сенсор

Изобретение относится к области измерительной техники и касается фотовозбуждаемого лазерного интегрально-оптического сенсора. Сенсор состоит из источника возбуждения, прозрачной подложки, тонкопленочной лазерно-активной среды, чувствительного слоя, оптических элементов вывода излучения. При...
Тип: Изобретение
Номер охранного документа: 0002697435
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0c1

Устройство оптической накачки твердотельного лазерно-активного элемента для усиления оптического излучения

Изобретение относится к лазерной технике. Устройство оптической накачки твердотельного лазерно-активного элемента для усиления оптического излучения осуществляет введение энергии накачки в лазерно-активную среду с боковых сторон активного элемента. Последовательное поперечно-продольное введение...
Тип: Изобретение
Номер охранного документа: 0002697434
Дата охранного документа: 14.08.2019
+ добавить свой РИД