×
05.03.2020
220.018.08e4

Результат интеллектуальной деятельности: Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля

Вид РИД

Изобретение

Аннотация: Предлагаемое изобретение относится к области автоматики и управления (G05), вычислительной (G06) и измерительной (G01) техники и может быть реализовано в виде новой последовательности и структуры операций преобразования сигналов датчиков различных физических величин, предназначенных для работы в современных аналого-цифровых системах автоматического управления и контроля (САУ). Технический результат: снижение структурной погрешности цифрового датчика. Изобретение представляет собой способ снижения структурной погрешности цифрового датчика физической величины (1) в аналого-цифровой системе автоматического управления или контроля, который содержит чувствительный элемент (2), выход которого подключен к входу аналого-цифрового интерфейса (3), а также выход (4) датчика, в который добавлен дополнительный астатический быстродействующий дискретный корректор (5), имеющий конечный переходный процесс, порядок астатизма на единицу больше, чем степень полинома, описывающего входной непрерывный сигнал ξ(t) чувствительного элемента (2) как функцию времени t, а относительный порядок передаточной функции дополнительного астатического быстродействующего дискретного корректора (5) равен единице. 5 ил., 1 табл.

Предлагаемое изобретение относится к области автоматики и управления (G05), вычислительной (G06) и измерительной (G01) техники и может быть реализовано в виде новой последовательности и структуры операций преобразования сигналов датчиков различных физических величин, предназначенных для работы в современных аналого-цифровых системах автоматического управления и контроля (САУ).

Наиболее распространенным элементом современных аналого-цифровых САУ являются цифровые датчики [1-18, 22-33], содержащие чувствительный элемент (ЧЭ) и аналого-цифровой интерфейс (АЦИ), преобразующий выходные сигналы чувствительного элемента в дискретные выходные сигналы цифрового датчика, которые затем вводятся в систему автоматического управления. Такие цифровые датчики реализуют известную [4,5,7,14,15,16,20,22] последовательность операций формирования дискретного сигнала из входного аналогового сигнала и используются во многих САУ [19,3,21,22,17,23,25].

Ближайшим прототипом заявляемого способа является известная последовательность преобразования входного аналогового сигнала в цифровой дискретный сигнал, описанная в монографии [Клаассен К.Б. Основы измерений. Электронные методы и приборы в измерительной технике. Москва: Постмаркет, 2002. – с. 292-294, рис. 4.15]. Известный способ реализован применительно к цифровому датчику, который содержит (фиг. 1) чувствительный элемент 2, выход которого подключен ко входу аналого-цифрового интерфейса 3, а также выход 4 датчика, причем на чувствительный элемент 2 воздействует входной непрерывный сигнал , описываемый полиномиальной функцией времени t степени r, и являющийся выходной переменной некоторого объекта управления или контроля, при этом чувствительный элемент 2 и аналого-цифровой интерфейс 3 формируют в моменты времени t = kT, на выходе аналого-цифрового интерфейса (3) запаздывающий на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента (2) выходной дискретный сигнал , и фильтруют его от шумов и помех с пренебрежимо малыми ошибками [22,23,24,25].

Существенный недостаток известного способа преобразования сигнала в традиционном датчике 1 фиг. 1 состоит в том, что при его практической реализации выходной дискретный сигнал датчика имеет задержку на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента 2. Это приводит к существенным динамическим ошибкам в работе САУ, использующих традиционный цифровой датчик 1 [21,23,25].

Основная задача изобретения состоит во введении в известный способ [22] операции дополнительного преобразования выходного сигнала аналого-цифрового интерфейса 3 (АЦИ), которое осуществляется в дополнительном астатическом быстродействующем дискретном корректоре 5 (АБДК), который включается между выходом АЦИ 3 и выходом датчика 4. При выполнении заявляемых требований к порядку астатизма, относительной степени и порядку дополнительного АБДК задержка сигнала на выходе 4 датчика минимизируется [26,27,28]. Это позволяет уменьшить динамическую ошибку САУ с обратной связью (фиг. 2), в которых используются традиционный цифровой датчик 1. Таким образом, в предлагаемом способе при его практической реализации снижается структурная погрешность цифрового датчика 1, что крайне важно для построения современных систем автоматического управления, а также контроля (измерения) различных физических величин.

Поставленная задача достигается тем, что в известном способе преобразования сигналов, который реализуется в традиционном цифровом датчике 1, содержащем чувствительный элемент 2, выход которого подключен ко входу аналого-цифрового интерфейса 3, а выход аналого-цифрового интерфейса 3 подключен к выходу 4 датчика, причем на чувствительный элемент 2 воздействует входной непрерывный сигнал , описываемый полиномиальной функцией времени t степени r, и являющийся выходной переменной некоторого объекта управления или контроля, а чувствительный элемент 2 и аналого-цифровой интерфейс 3 формируют в моменты времени , на выходе аналого-цифрового интерфейса (3) запаздывающий на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента (2) выходной дискретный сигнал , и фильтруют его от шумов и помех с пренебрежимо малыми ошибками, предусмотрена дополнительная операция преобразования выходного сигнала аналого-цифрового интерфейса 3 до его поступления на выход 4 датчика (фиг. 2) , состоящая в том, что выходной дискретный сигнал , аналого-цифрового интерфейса 3, запаздывающий на целое число q периодов времени T относительно дискретных значений ξ1(kT) входного непрерывного сигнала чувствительного элемента 2, обрабатывают в дополнительном астатическом быстродействующем дискретном корректоре 5, включенном между выходом аналого-цифрового интерфейса 3 и выходом 4 датчика, при этом дополнительный астатический быстродействующий дискретный корректор 5 имеет порядок астатизма на единицу больше, чем степень r полинома, описывающего входной непрерывный сигнал чувствительного элемента 2 как функцию времени t, т.е. . При этом передаточная функция АБДК

(1)

имеет относительную степень равную единице, а значение порядка АБДК таково, что полином имеет корней тождественно равных единице, т.е.

, (2)

где полиномы

, . (3)

При этом коэффициенты полинома могут иметь произвольные значения, а коэффициенты полинома определяют характер переходного процесса АБДК. Поэтому, если

, , (4)

то АБДК имеет постоянное перерегулирование .

На чертеже фиг. 1 показана схема цифрового датчика-прототипа 1, а на чертеже фиг. 2 – схема его включения в типовую аналого-цифровую систему автоматического управления и контроля, которая содержит объект управления и исполнительное устройство (ОУ и ИУ), модуль реализации алгоритмов управления (МРАУ), чувствительный элемент 2 (ЧЭ), аналого-цифровой интерфейс 3 (АЦИ).

На чертеже фиг. 3 представлена схема цифрового датчика, поясняющая сущность заявляемого способа в соответствии с формулой изобретения.

На чертеже фиг. 4 показана реакция датчика на переменную = 1(0,5k), а на чертеже фиг. 5 - реакция датчика на переменную = 0,5k.

Способ снижения структурной погрешности традиционного цифрового датчика физической величины 1 в аналого-цифровой системе автоматического управления или контроля, содержащего чувствительный элемент 2, выход которого подключен ко входу аналого-цифрового интерфейса 3, а также выход 4 датчика, причем на чувствительный элемент 2 воздействует входной непрерывный сигнал , описываемый полиномиальной функцией времени t степени r и являющийся выходной переменной некоторого объекта управления или контроля, при этом чувствительный элемент 2 и аналого-цифровой интерфейс 3 формируют в моменты времени t = kT, на выходе аналого-цифрового интерфейса 3 запаздывающий на целое число q периодов времени Т относительно входного непрерывного сигнала чувствительного элемента 2 выходной дискретный сигнал , и фильтруют его от шумов и помех с пренебрежимо малыми ошибками. Выходной дискретный сигнал , аналого-цифрового интерфейса 3, запаздывающий на целое число q периодов времени T относительно дискретных значений ξ1(kT), входного непрерывного сигнала чувствительного элемента 2, обрабатывают в дополнительном астатическом быстродействующем дискретном корректоре 5, включенном между выходом аналого-цифрового интерфейса 3 и выходом 4 датчика, при этом дополнительный астатический быстродействующий дискретный корректор 5 имеет конечный переходный процесс; его порядок астатизма на единицу больше, чем степень полинома, описывающего входной непрерывный сигнал чувствительного элемента 2 как функцию времени t, а относительная степень передаточной функции астатического быстродействующего дискретного корректора равна единице.

Рассмотрим работу цифрового датчика, реализующего заявляемый способ снижения его структурной погрешности (фиг. 3).

Датчики, традиционно используемые в системах автоматического управления и контроля (САУ), обычно представляют собой совокупность чувствительного элемента (ЧЭ) и аналого-цифрового интерфейса (АЦИ), который обеспечивает сопряжение чувствительного элемента с последующими элементами САУ [19,21,22,33]. Для повышения точности преобразования после традиционного цифрового датчика 1 предлагается ввести специальную обработку сигнала в дополнительном астатическом быстродействующем дискретном корректоре (АБДК), как показано на чертеже фиг. 3.

Будем предполагать, что чувствительный элемент 2 совместно с АЦИ 3 формирует с некоторыми периодом T дискретные значения выходной величины объекта управления, являющейся входным сигналом датчика. Обычно эти значения содержат случайные шумы и помехи, поэтому в АЦИ 3 они подвергаются процедурам сглаживания, так что поступающие на вход АБДК 5 дискретные значения содержат пренебрежимо малые отклонения от значений входной величины , измеряемой датчиком (в соответствующие моменты времени).

Сглаживающие свойства АЦИ 3, который является динамической системой, характеризуются некоторыми переходными процессами [24, 25, 26]. Вследствие этого, сглаженные дискретные значения измеряемой переменной формируются на выходе АЦИ 3 с некоторой задержкой по времени τз = qT, где q ≥ 0 целое число, что приводит к возникновению ошибок датчика фиг. 1, обусловленных этой задержкой. Основной целью специальной дополнительной обработки сигнала в АБДК 5 является компенсация влияния указанной задержки по времени на точность цифрового датчика в целом. Поэтому передаточная функция АБДК 5 формируется такой, чтобы к окончанию переходного процесса в АБДК 5 выходной сигнал датчика не имел задержки по отношению ко входному сигналу чувствительного элемента 1. Тем самым устраняется структурная ошибка, обусловленная запаздыванием выходного сигнала АЦИ 3 [27, 28].

Покажем это аналитически. Известно, что если некоторый цифровой элемент порядка имеет конечную длительность переходных процессов по входному воздействию , то его передаточная функция (3) по этому воздействию имеет вид

. (5)

С другой стороны, если тот же элемент (3) по воздействию имеет порядок астатизма , то его передаточная функция (5) удовлетворяет равенству

, (6)

где V(z) – нормированный по старшей степени полином, степень которого [21, 29, 30].

Покажем, что цифровой датчик, построенный по заявляемому способу (фиг. 3), т.е. характеризующийся выражениями (1) – (4), имеет конечный переходной процесс, порядок астатизма на единицу больше степени полинома от t, описывающего входной сигнал датчика, и по окончании переходного процесса его ошибка равна нулю.

Из формулы изобретения следует, что ЧЭ 2 и АЦИ 3 цифрового датчика (фиг. 3) при всех , формируют с периодом Т и с задержкой по времени на q периодов Т дискретные значения переменной , описываемой полиномом степени r и поступающей на вход цифрового датчика. Обозначим выходной сигнал АЦИ как , ; тогда его z-изображение определяется выражением

, (7)

где – z-изображение дискретного сигнала , значения которого в моменты времени , равны дискретным значениям непрерывного сигнала степени r, поступающего на вход рассматриваемого цифрового датчика, то есть , . Поэтому z-изображение сигнала , имеет вид

, (8)

где – некоторый полином, степень которого не более r +1. Обычно степень r – известная величина, а коэффициенты – заранее неизвестны.

С выхода АЦИ 3 (см. фиг. 3) дискретные значения , поступают на вход АБДК 5 с передаточной функцией, , которая имеет вид (1). Так как ЧЭ, АЦИ и АБДК соединены последовательно, то из выражений (1) и (7) следует, что передаточная функция датчика, построенного по предлагаемому способу, имеет вид

. (9)

Из сравнения выражений (9) и (5) с очевидностью следует, что рассматриваемый цифровой датчик, действительно, имеет конечный переходной процесс, продолжительностью .

Из выражения (2) следует, что полином из (9) определяется выражением , подставим это выражение в (9):

. (10)

Используя полученную передаточную функцию (10) цифрового датчика, найдем его передаточную функцию по ошибке :

. (11)

Отсюда в соответствии с выражением (6) следует, что порядок астатизма датчика, построенного по заявляемому способу, равен , т.е. действительно, на единицу больше степени r полинома, описывающего сигнал , поступающий на вход рассматриваемого цифрового датчика.

Покажем также, что его ошибка равна нулю после окончания переходного процесса, т.е. при , где . С этой целю из выражения (11) найдем z-изображение ошибки и учтем выражение (8). В результате будем иметь

.

Отсюда, сокращая полином , выводим равенство

. (12)

В соответствии с выражениями (3) и (8) степень произведения не превышает значения . Поэтому, применяя теорему z-преобразования о предельном значении [21, 31, 32 (с. 197)] к выражению (12), получим

.

В рассматриваемом случае датчик, построенный по заявляемому способу, имеет переходной процесс конечной длительности . Поэтому его ошибка при всех равна .

Отметим также, что АБДК, описывается передаточной функцией (1), (3) или (4), которая имеет относительную степень , поэтому он является функциональным модулем, реализуемым типовыми цифровыми средствами (микроконтроллеры, сигнальные процессоры, ПЛИС-элементы и т.п.) [21, 33-35].

Численные значения порядка АБДК определяются решением уравнения (2), где полином берется в виде либо (3), либо (4). Этот выбор зависит от желаемого порядка астатизма датчика и перерегулирования ; Выбор того или иного порядка астатизма определяется степенью r полинома , который описывает сигнал , поступающий на вход датчика. Если этот сигнал может иметь различные, но постоянные значения (тогда его ), то можно полагать . В этом случае полином берется в виде (4). При этом передаточная функция датчика определяется вытекающим из (9) и (4) выражением

, , (13)

где , а желаемое перерегулирование датчика в %.

Если входной сигнал имеет и линейную составляющую (тогда его ), то необходимо полагать , а передаточную функцию датчика также брать в виде (13). Значения обычно лежат в пределах от 10% до 35% [29, 30]. При этом необходимо иметь в виду, что с уменьшением значения увеличивается порядок (сложность) АБДК в особенности при . Значения порядка АБДК при и различных значениях и q приведены в таблице 1.

Таблица 1

Порядок АБДК при vдат = 2

q
σ %
0 1 2 3
10 % 11 21 31 41
15 % 8 15 22 29
20 % 6 11 16 21
25 % 5 9 13 17
33 % 4 7 10 13

Если требуется обеспечить первый порядок астатизма (), то можно полагать значение постоянного перерегулирования любым в указанных выше пределах, но и в этом случае с увеличением значения q порядок датчика увеличивается. Минимальный порядок АБДК или .

В тех случаях, когда , полином в (1) берется в виде (3); при этом порядок АБДК также находится путем решения уравнения (2) при заданном значении q, но одним из итерационных методов [31, 35]. Перерегулирование определяется в процессе решения уравнения (2).

Рассмотрим конкретный пример построения датчика, реализующего заявляемый способ снижения его структурной погрешности. Пусть требуется найти передаточную функцию датчика (фиг. 3), который должен иметь: порядок астатизма , постоянное перерегулирование , период с, при задержке по времени в ЧЭ 2 и АЦИ 3 , т.е. при . Так как , , то по таблице 1 находим , а по формуле (13) при и получим искомую передаточную функцию датчика:

. (14)

На чертежах фиг. 4 и фиг. 5 показаны полученные в MATLAB графики изменения выходной переменной цифрового датчика (фиг. 3) с найденной передаточной функцией (14) при его входных переменных и при Т = 0,5 с. По этим рисункам легко заключить, что:

- датчик фиг. 3 имеет перерегулирование 20%;

- переходный процесс длится ровно 9 секунд, т.е. 18Т;

- ошибки датчика, несмотря на наличие запаздывания, в обоих случаях равны нулю.

Таким образом, при найденной передаточной функции (14) цифровой датчик фиг. 3, реализующий предлагаемый способ снижения структурной погрешности, имеет требуемые свойства.

Отметим также, что если период работы ЧЭ 2, АЦИ 3 и АБДК 5 будет равен не 0,5с, а 0,05с, то передаточная функция датчика по-прежнему будет определяться выражением (10), но длительность переходных процессов, аналогичных показанным на чертежах фиг. 4, фиг. 5, будет равна 0,9 с.

При использовании цифрового датчика, реализующего заявляемый способ повышения точности, запаздывание может отсутствовать, быть равным одному или нескольким периодам дискретизации, но оно должно быть определенным и не изменяться в процессе функционирования датчика. При этом с увеличением запаздывания порядок цифрового датчика, как видно из таблицы 1, возрастает.

Таким образом, предложенный способ снижения структурной погрешности традиционного цифрового датчика реализуется с помощью дополнительной операции обработки сигнала на выходе АЦИ посредством АБДК с конечной длительностью переходных процессов и соответствующим порядком астатизма. При этом запаздывание в ЧЭ и АЦИ, может быть любым, но постоянным и равным целому числу периодов дискретизации [31,32].

Полученные результаты в связи с их высокой степенью обобщения могут использоваться при разработке высокоточных цифровых датчиков различных физических величин (ускорение, давление, перемещение, температура, радиация, вес, механические деформации, электрические величины и компоненты электронных схем, структура газов, химические процессы в материалах, оптические сигналы, медицинские, магнитные и электромагнитные сенсоры и т.д.) для применения в аналого-цифровых системах автоматического управления и контроля [19, 31, 32, 34, 35].

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Авт.свид. СССР № 467386, 1975 г.

2. Авт.свид. СССР 481130, 1975 г.

3. Авт.свид. СССР 723502, 1980 г.

4. Патент СССР 208003, 1968 г.

5. Авт.свид. СССР 373724, 1973 г.

6. Авт.свид. СССР 1613864, 1990 г.

7. Авт.свид. СССР 728071, 1980 г.

8. Патент SU 1831669, 1987 г.

9. Патент SU 364956, 1973 г.

10. Патент SU 1739185, 1980 г.

11. Авт.свид. СССР 458097, 1975 г.

12. Патент SU 1081548, 1984 г.

13. Патент EP 0714038, 1995 г.

14. Патент US 9320470, 2008 г.

15. Патент US 7834795, 2009 г.

16. Патент JP 5072190, 2005 г.

17. Патент CN 103101053, 2012 г.

18. Патент US 8588887, 2013 г.

19. Tsikin I.A., Discrete-Analog Signal Processing. Publishing Radio and Communications, Moscow, 1982. 161 p. (In Russian)

20. Войтович И.Д. Интеллектуальные сенсоры: Учебное пособие /И.Д. Войтович, В.М. Корсунский. – М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2012. – 624 с.: ил., табл. – (Основы информационных технологий).

21. Гайдук А.Р., Плаксиенко Е.А. Анализ и аналитический синтез цифровых систем управления: Монография.СПб.: Издательство «Лань», 2018. 272 с. ISBN 978-5-8114-2813-7.

22. Клаассен К.Б. Основы измерений. Электронные методы и приборы в измерительной технике. Москва: Постмаркет, 2002. – С. 292-294, рис. 4.15

23. Samoylov L.K. Сlassical Method of the Account of Influence Time Delays of signals in devices of Control Systems // Izv-ya SFedU. Engineering Sciences, 2016, No. 4. pp. 40 -49.

24. Прокопенко Н.Н., Гайдук А.Р., Бугакова А.В. Переходные процессы в операционном усилителе с экспоненциальной проходной характеристикой драйвера корректирующего конденсатора // Радиотехника, 2017. № 10. С. 148-153.

25. Samoylov L.K., Denisenko D.Y., Prokopenko N.N. The Function Approximation of the Signal Delay Time in the Anti-Alias Filter of the A/D Interface of the Instrumentation and Control System. 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), Saint Petersburg, Russia, 2018, pp. 18-21. doi: 10.1109/EExPolytech.2018.8564413

26. Прокопенко Н.Н., Гайдук А.Р., Будяков П., Бутурлагин Н. The synthesis of the correction circuit of the high speed sensors of the physical quantities and current-voltage converters with the parasitic capacitance. Proceeding of Design & Test Symposium (EWDTS), 2014 East-West. Kiev, Ukraine, September 26-29, 2014.

27. Гайдук А.Р., Семенов А.В. Метод построения желаемых передаточных функций дискретных систем с высоким порядком астатизма // Изв. ЮФУ. Технические науки. Таганрог: Изд-во ТТИ ЮФУ. № 2, 2013. С. 14-19.

28. Gaiduk A.R., Stojković N.M. Formation of transfer function for control systems under implementation conditions // FACTA UNIVERSITATIS, Series: Automatic Control and Robotics. Vol. 13. № 1. 2014. pp.15-25.

29. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. СПб.: Профессия, 2003. 768 с

30. Ким П.Д. Теория автоматического управления. Т. 1: Линейные системы. М.: Физматлит, 2003. 288 с.

31. Гайдук А.Р. Математические методы анализа и синтеза динамических систем. Saarbrücken, Deutschland: Lap Lambert Academic Publishing, 2015. 251 c.

32. Гайдук А.Р. Непрерывные и дискретные динамические системы. М.: УМ и ИЦ «Учебная литература», 2004. 252 с.

33. Алексеенко А.Г. Основы микросхемотехники. – 3-е изд., перераб. И доп. – М.: ЮНИМЕДИАСТАЙЛ, 2002. – 448 с.

34. Волович Г.И. Схемотехника аналоговых и аналого-цифровых электронных устройств. 2-е изд., испр. – М.: Издательский дом «Додэка-XXI», 2007. – 528 с., ил.

35. Гайдук А.Р. Синтез систем автоматического управления по передаточным функциям // Автоматика и телемеханика. 1980. № 1. С. 11–16.

Способ снижения структурной погрешности цифрового датчика физической величины (1) в аналого-цифровой системе автоматического управления или контроля, содержащего чувствительный элемент (2), выход которого подключен ко входу аналого-цифрового интерфейса (3), а также выход (4) датчика, причем на чувствительный элемент (2) воздействует входной непрерывный сигнал ξ(t), описываемый полиномиальной функцией времени t и являющийся выходной переменной объекта управления или контроля, при этом чувствительный элемент (2) и аналого-цифровой интерфейс (3) формируют в моменты времени t=kT, k=q, q+1, q+2, …, на выходе аналого-цифрового интерфейса (3) запаздывающий на целое число q периодов времени T относительно входного непрерывного сигнала ξ(t), t≥0, чувствительного элемента (2) выходной дискретный сигнал ξ((k-q)T), k=q, q+1, q+2, …, и фильтруют его от шумов и помех с пренебрежимо малыми ошибками, отличающийся тем, что выходной дискретный сигнал ξ((k-q)T), k=q, q+1, q+2, …, аналого-цифрового интерфейса (3), запаздывающий на целое число q периодов времени Т относительно дискретных значений ξ(kT) входного непрерывного сигнала ξ(t) чувствительного элемента (2), обрабатывают в дополнительном астатическом быстродействующем дискретном корректоре (5), включенном между выходом аналого-цифрового интерфейса (3) и выходом (4) датчика, при этом дополнительный астатический быстродействующий дискретный корректор (5) имеет конечный переходный процесс, порядок астатизма на единицу больше, чем степень полинома, описывающего входной непрерывный сигнал ξ(t) чувствительного элемента (2) как функцию времени t, а относительный порядок передаточной функции дополнительного астатического быстродействующего дискретного корректора (5) равен единице.
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля
Источник поступления информации: Роспатент

Showing 81-90 of 186 items.
04.04.2019
№219.016.fb76

Многоканальный быстродействующий операционный усилитель

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в аналоговых интерфейсах и устройствах преобразования сигналов, в том числе работающих в диапазоне низких температур и проникающей радиации. Технический результат заключается в повышении максимальной скорости...
Тип: Изобретение
Номер охранного документа: 0002683851
Дата охранного документа: 02.04.2019
12.04.2019
№219.017.0b7f

Буферный усилитель на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных и выходных усилителей мощности различных аналоговых устройств (операционных усилителей, драйверов линий связи и т.п.), допускающих работу в условиях воздействия проникающей...
Тип: Изобретение
Номер охранного документа: 0002684489
Дата охранного документа: 09.04.2019
12.04.2019
№219.017.0bd4

Быстродействующий дифференциальный операционный усилитель с дифференцирующими цепями коррекции

Изобретение относится к дифференциальным операционным усилителям. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения без ухудшения энергетических параметров. Дифференциальный операционный усилитель содержит входной дифференциальный каскад с...
Тип: Изобретение
Номер охранного документа: 0002684500
Дата охранного документа: 09.04.2019
12.04.2019
№219.017.0c0b

Дифференциальный каскад на комплементарных полевых транзисторах

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в...
Тип: Изобретение
Номер охранного документа: 0002684473
Дата охранного документа: 09.04.2019
13.04.2019
№219.017.0c2b

Система отопления и вентиляции помещения путем утилизации отработанных дымовых газов котельной с независимой системой регулирования температуры

Изобретение относится к дисциплине энергосбережениия и может быть использовано для отопления и вентиляции жилых помещений, помещений с временным пребыванием людей и нежилых помещений. Технической задачей изобретения является создание системы отопления и вентиляции помещения с использованием...
Тип: Изобретение
Номер охранного документа: 0002684678
Дата охранного документа: 11.04.2019
27.04.2019
№219.017.3cdf

Фотоэлектрический способ определения средней концентрации и среднего размера частиц пыли

Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока,...
Тип: Изобретение
Номер охранного документа: 0002686401
Дата охранного документа: 25.04.2019
10.05.2019
№219.017.514b

Буферный усилитель для работы при низких температурах

Изобретение относится к вычислительной технике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения буферного усилителя. Буферный усилитель для работы при низких температурах содержит вход и выход устройства, неинвертирующий...
Тип: Изобретение
Номер охранного документа: 0002687161
Дата охранного документа: 07.05.2019
29.05.2019
№219.017.6296

Полосовой arc-фильтр на двух операционных усилителях с понижением частоты полюса и независимой подстройкой основных параметров

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для ограничения спектра источника сигнала. Техническим результатом изобретения является создание схемы полосового АRC-фильтра с понижением частоты полюса, которая обеспечивает независимую подстройку...
Тип: Изобретение
Номер охранного документа: 0002688237
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62c0

Дифференциальный усилитель на комплементарных полевых транзисторах с управляющим p-n переходом

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима входных полевых транзисторов при отрицательных температурах, возможности изменения...
Тип: Изобретение
Номер охранного документа: 0002688225
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62d9

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в аналоговых интерфейсах и устройствах преобразования сигналов. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения ДОУ. Быстродействующий дифференциальный...
Тип: Изобретение
Номер охранного документа: 0002688227
Дата охранного документа: 21.05.2019
Showing 81-90 of 216 items.
25.08.2017
№217.015.b502

Планарная индуктивность

Изобретение относится к пассивной элементной базе устройств радиотехники и связи и может найти широкое применение в различных усилителях, смесителях и RLC-фильтрах ВЧ и СВЧ диапазонов, радиоприемниках и радиопередатчиках и т.п. Технический результат: увеличение численных значений L планарной...
Тип: Изобретение
Номер охранного документа: 0002614188
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b96a

Биполярно-полевой мультидифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня. Для этого предложен биполярно-полевой мультидифференциальный...
Тип: Изобретение
Номер охранного документа: 0002615071
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b973

Прецизионный двухкаскадный дифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении коэффициента усиления дифференциального сигнала в разомкнутом состоянии двухкаскадного ОУ до уровня 90÷400 дБ....
Тип: Изобретение
Номер охранного документа: 0002615070
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9ac

Rs-триггер

Изобретение относится к области вычислительной техники. Технический результат: создание RS-триггера, в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов. Для этого предложен RS-триггер, который содержит первый 1 (S) и второй 2 (R) логические входы...
Тип: Изобретение
Номер охранного документа: 0002615069
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9bd

Биполярно-полевой дифференциальный операционный усилитель

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля. Для этого предложен биполярно-полевой дифференциальный...
Тип: Изобретение
Номер охранного документа: 0002615068
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9be

Операционный усилитель

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в повышении прецизионности операционного усилителя в условиях дестабилизирующих факторов. Операционный усилитель...
Тип: Изобретение
Номер охранного документа: 0002615066
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bfe5

Дифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада. В схему...
Тип: Изобретение
Номер охранного документа: 0002616573
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c03e

Инструментальный усилитель с повышенным ослаблением входного синфазного сигнала

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов инструментального усилителя....
Тип: Изобретение
Номер охранного документа: 0002616570
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.d063

Дифференциальный инструментальный усилитель с парафазным выходом

Изобретение относится к области аналоговой усилительной техники. Технический результат: повышение значения коэффициента передачи по напряжению. Для этого предложен дифференциальный инструментальный усилитель с парафазным выходом, который содержит неинвертирующий вход (1) устройства и синфазный...
Тип: Изобретение
Номер охранного документа: 0002621291
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d0af

Дифференциальный операционный усилитель для работы при низких температурах

Изобретение относится к области электроники. Технический результат - повышение коэффициента ослабления входного синфазного сигнала. Для этого предложен дифференциальный операционный усилитель для работы при низких температурах, который содержит первый (1) входной полевой транзистор, первый (2)...
Тип: Изобретение
Номер охранного документа: 0002621286
Дата охранного документа: 01.06.2017
+ добавить свой РИД