×
06.02.2020
220.017.fff4

Результат интеллектуальной деятельности: Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации. Предложены способ и устройство для измерения массы газов (водорода Н и кислорода O) при огневых испытаниях ракетных двигателей малых тяг при работе в режиме одиночных включений и в импульсных режимах. Устройство состоит из по меньшей мере одной рабочей и эталонной емкостей, электропневмоклапанов, датчика перепада давлений, датчиков давления и температуры, причем оно включает как минимум две емкости с рабочим телом - эталонную и по меньшей мере одну рабочую, каждая из которых изолирована от общей пневмогидравлической системы с помощью электропневмоклапанов. После проведения одиночного включения или импульсного режима при условии стабилизации параметров в емкостях измеряют перепад давлений между по меньшей мере одной рабочей и эталонной емкостями, затем определяют массу газа по соотношению Δm=(μVΔp)/(RT), где μ - молярная масса газа, V - объем по меньшей мере одной рабочей емкости, Δр - перепад давлений между по меньшей мере одной рабочей и эталонной емкостями, R - универсальная газовая постоянная, Т - температура рабочего тела. Изобретение позволяет увеличить точность определения параметров в режиме одиночных включений и в импульсных режимах работы ракетного двигателя малой тяги. 2 н.п. ф-лы, 1 ил.

Настоящее изобретение относится к области измерения газообразных водорода Н2 и кислорода O2 при огневых испытаниях на стендах ракетных двигателей малых тяг (РДМТ), которые применяются в качестве исполнительных органов систем управления объектов ракетно-космической техники и которые работают большую часть времени либо в режимах одиночных включений, либо в импульсных режимах. При этом длительность минимального импульса РДМТ составляет примерно 0,05 с, а максимальная частота включений двигателя по порядку величины может составлять примерно 20 Гц.

Особенно эффективны такие РДМТ в составе двигательных установок космических аппаратов с применением электролиза воды, который позволяет получать на борту газообразные водород и кислород и использовать их в качестве топлива для двигателей малых тяг.

Известны расходомеры, работающие на различных физических принципах, применяемых, в основном, для измерений массы газообразных компонентов топлива на длительных непрерывных режимах (В.И. Монахов. Измерение расхода и количества жидкости, газа и пара. Госэнергоиздат, Москва, Ленинград, 1962 г. Стр. 4-7). Такие расходомеры не пригодны для измерений массы газообразных компонентов топлива при работе РДМТ в импульсных режимах.

Наиболее близким к заявляемому техническому решению являются расходомеры, принцип действия которых основан на измерении перепада давлений, создаваемого при течении газа на каком-либо сужающемся устройстве, установленном внутри канала (В.И. Монахов. Измерение расхода и количества жидкости, газа и пара. Госэнергоиздат, Москва, Ленинград, 1962 г. Стр. 4-7. Кремлевский, П.П. Расходомеры [текст] / П.П. Кремлевский; Машгиз - М.-Л., 1964. - 656 с. Стр. 75-83).

Недостатком этого устройства является необходимость измерять перепад давлений в течение короткого времени, соизмеримого с длительностью импульса РДМТ, что технически практически невыполнимо.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа и устройства для измерения массы газов при огневых испытаниях ракетных двигателей малых тяг при работе в режиме одиночных включений и импульсных режимах.

Техническим результатом является перевод процесса импульсных измерений в стационарные, что приводит к увеличению точности определения параметров в режиме одиночных включений и импульсных режимах работы РДМТ.

Данная задача решается за счет того, что способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, заключающийся в измерении перепада давлений, само измерение перепада давлений осуществляют между изолированными от общей пневмогидравлической системы эталонной и, по меньшей мере, одной рабочей емкостями, причем перед испытанием двигателя открывают все электропневмоклапаны, кроме электропневмоклапана двигателя и заправляют емкости, затем все электропневмоклапаны закрывают, перед пуском двигателя открывают электропневмоклапаны, связывающие, по меньшей мере, одну рабочую емкость с двигателем, запускают двигатель, после проведения одиночного включения или импульсного режима при условии стабилизации параметров в, по меньшей мере, одной рабочей емкости, измеряют перепад давлений между, по меньшей мере, одной рабочей и эталонной емкостями, затем определяют массу газа по соотношению Δm=(μVΔp)/(RT), где μ - молярная масса газа, V - объем, по меньшей мере, одной рабочей емкостей, Δр - перепад давлений между, по меньшей мере, одной рабочей и эталонной емкостями, R - универсальная газовая постоянная, Т - температура рабочего тела.

Также задача решается и за счет того, что устройство для измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из датчика перепада давлений, электропневмоклапанов, датчика давления и термопар, включает, как минимум, две емкости с рабочим телом - эталонную и, по меньшей мере, одну рабочую, каждая из которых установлена с возможностью изоляции от общей пневмогидравлической системы с помощью электропневмоклапанов, причем в каждой из них установлена термопара, а датчик перепада давлений установлен между эталонной и рабочей, по меньшей мере, одной емкостями.

Сущность изобретения поясняется чертежом, на котором изображены: электропневмоклапан 1, эталонная емкость 2, электропневмоклапан 3, электропневмоклапан 4, датчик перепада давлений 5, рабочая емкость 6, электропневмоклапан 7, электропневмоклапан 8, термопара 9, рабочая емкость 10, электропневмоклапан 11, термопара 12, электропневмоклапан 13, датчик давления на входе в двигатель 14, термопара на входе в двигатель 15, электропневмоклапан двигателя 16, ракетный двигатель 17.

На чертеже приводится схема только для одного компонента топлива, для другого компонента топлива схема аналогичная. Количество рабочих емкостей может быть любым, их число определяется диапазоном измеряемых масс газа.

Работает устройство следующим образом. Перед испытанием ракетного двигателя малой тяги осуществляется заправка устройства соответствующим количеством топлива через электропневмоклапан 1 при открытых электрогшевмоклапанах 1, 3, 4, 7, 8, 11, 13. Контроль давления осуществляется датчиком давления 14. Контроль температуры осуществляется термопарами 9 и 12. После заправки топливом электропневмоклапаны закрываются.

Для пуска двигателя открываются электропневмоклапаны 4 и 7, 8 (при необходимости открывается электропневмоклапан 11 и другие - по числу рабочих емкостей), открывается также электропневмоклапан двигателя 16. После выключения двигателя 17 закрываются электропневмоклапаны 8, 11, 16. Затем следует выдержка, длительность которой определяется стабилизацией температуры в емкостях 6, 10 по показаниям термопар 9, 12 (измеренные значения температуры в каждой из емкостей не должны отличаться на величину Δt≤1°С). После этого снимают показания датчика перепада давлений 5 и определяют массу газообразного компонента, прошедшего через двигатель за импульс или серию импульсов, время которого определяют по компьютерной записи. Массовый расход газообразного компонента топлива за импульс в серии импульсов рассчитывают.


Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации
Источник поступления информации: Роспатент

Showing 21-30 of 77 items.
20.06.2018
№218.016.6532

Устройство для измерения пространственной плотности микрометеороидов и частиц космического мусора

Изобретение относится к области приборостроения, средств автоматизации и систем измерения и может быть использовано в ходе натурного эксперимента в качестве датчика высокоскоростных пылевых частиц на борту космического аппарата. Сущность изобретения заключается в том, что устройство для...
Тип: Изобретение
Номер охранного документа: 0002658072
Дата охранного документа: 19.06.2018
08.07.2018
№218.016.6da7

Мультисенсорное волоконно-оптическое устройство сбора информации

Изобретение относится к системе контроля энергонасыщенных объектов. Техническим результатом является повышение достоверности устройства сбора информации за счет коррекции динамической погрешности преобразования и исключения неоднозначности преобразования. Мультисенсорное волоконно-оптическое...
Тип: Изобретение
Номер охранного документа: 0002660644
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6dbc

Мультисенсорный преобразователь информации

Изобретение относится к автоматике и вычислительной технике. Технический результат заключается в повышении достоверности преобразования за счет создания возможности оперативной поверки и автокоррекции инструментальных погрешностей преобразователя. Такой результат достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002660623
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6e28

Планарный микродозатор с изменением фиксированного количества анализируемого газа в дозе

Изобретение относится к устройствам ввода газообразных проб в газовый хроматограф и может быть использовано для количественного анализа многокомпонентных сложных смесей в различных отраслях промышленности: химической, нефтяной, газовой, пищевой, медицине, экологии и др. Планарный микродозатор...
Тип: Изобретение
Номер охранного документа: 0002660392
Дата охранного документа: 06.07.2018
21.07.2018
№218.016.732b

Преобразователь угол - код

Группа изобретений относится к области аналого-цифрового преобразования и может быть использована в системе контроля энергонасыщенных объектов. Техническим результатом является упрощение конструкции и уменьшение габаритов преобразователя. Устройство содержит излучатель, передающий световод,...
Тип: Изобретение
Номер охранного документа: 0002661752
Дата охранного документа: 19.07.2018
02.08.2018
№218.016.77d3

Место крепления рабочих лопаток роторов бустера и компрессора авиадвигателей пятого поколения. ротор бустера и ротор компрессора высокого давления авиадвигателя пятого поколения, с рабочими лопатками, закрепляемыми с помощью замков типа "ласточкин хвост" в кольцевых канавках этих устройств. способ сборки места крепления рабочих лопаток роторов бустера и компрессора

Группа изобретений относится к области гашения вибраций рабочих лопаток бустера и компрессора авиационных газотурбинных двигателей пятого поколения. Место крепления рабочих лопаток роторов бустера и компрессора авиадвигателей пятого поколения, выполненное в виде кольцевого выступа на внешней и...
Тип: Изобретение
Номер охранного документа: 0002662755
Дата охранного документа: 30.07.2018
21.11.2018
№218.016.9f2c

Способ бесконтактного фрактального контроля шероховатости гидрофобной поверхности

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую гидрофобную поверхность, например парафин, воск, огнеупоры и т.п. Заявленный способ бесконтактного фрактального контроля...
Тип: Изобретение
Номер охранного документа: 0002672788
Дата охранного документа: 19.11.2018
06.12.2018
№218.016.a42d

Пульсирующий турбореактивный двигатель

Пульсирующий турбореактивный двигатель снабжен входным диффузором, компрессором, газовой турбиной, выходным реактивным соплом и блоком пульсирующих камер сгорания, электродвигатель постоянного тока с редуктором. Блок пульсирующих камер сгорания содержит неподвижные горизонтальные пульсирующие...
Тип: Изобретение
Номер охранного документа: 0002674091
Дата охранного документа: 04.12.2018
12.12.2018
№218.016.a579

Композиция для производства пористого заполнителя

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002674449
Дата охранного документа: 10.12.2018
14.12.2018
№218.016.a72b

Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку

Изобретение относится к способу изготовления деталей из жаропрочных сплавов на основе никеля, предназначенных для работы в условиях повышенных температур в газотурбинных двигателях. Деталь получают путем селективного лазерного сплавления с мощностью лазерного излучения от 280 до 320 Вт,...
Тип: Изобретение
Номер охранного документа: 0002674685
Дата охранного документа: 13.12.2018
Showing 11-13 of 13 items.
27.06.2019
№219.017.986b

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в стационарном режиме работы

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство состоит из упругой балки с двумя силоизмерительными датчиками (весоизмерительным и задающим), на которой крепится испытуемое изделие и измерительный датчик, узла подвеса, силозадающего устройства...
Тип: Изобретение
Номер охранного документа: 0002692591
Дата охранного документа: 25.06.2019
25.01.2020
№220.017.f9ef

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в импульсных режимах работы

Изобретение относится к испытательным стендам для жидкостных ракетных двигателей малой тяги (ЖРДМТ). Тягоизмерительное устройство состоит из корпуса, выполненного в виде круговой балки, упругих элементов, представляющих собой радиально ориентированные лепестки прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002711813
Дата охранного документа: 23.01.2020
24.06.2020
№220.018.29f1

Ракетный двигатель малой тяги на несамовоспламеняющихся жидком горючем и газообразном окислителе

Изобретение относится к области ракетно-космической техники, а именно к ракетным двигателям малой тяги на несамовоспламеняющихся газообразном окислителе и жидком горючем. Ракетный двигатель содержит агрегат зажигания и свечу, электропневмоклапаны окислителя «О» и горючего «Г», смесительную...
Тип: Изобретение
Номер охранного документа: 0002724069
Дата охранного документа: 19.06.2020
+ добавить свой РИД