×
19.12.2019
219.017.eec5

Результат интеллектуальной деятельности: Способ газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством термораспылителя

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газотермических технологий и может быть использовано для нанесения порошковых покрытий методом низкоскоростного газопламенного напыления.  Способ газопламенного напыления порошкового материала с получением покрытия на никелевой основе посредством термораспылителя включает активирование пламени, образованного при сгорании ацетилена и кислорода, и подачу порошкового материала под срез сопла термораспылителя, при этом в качестве активирующей добавки используют водный раствор аммиака, а активирование пламени осуществляют путем подачи активирующей добавки до термического контакта с ядром основного пламени через термический диссоциатор, установленный соосно внутри центрального канала термораспылителя, при этом глубина его проникновения в высокотемпературное ядро основного пламени регулируется. Технический результат направлен на повышение физико-механических свойств порошковых покрытий поверхностей деталей машин и инструментов. 1 табл., 1 ил.

Изобретение относится к области газотермических технологий и может быть использовано при нанесении порошковых покрытий методом низкоскоростного газопламенного напыления. 

Известные способы получения низкоскоростного газопламенного напыления состоят в том, что определенная смесь кислорода (или воздуха) с горючим газом поступает в горелку, где поджигается и образует факел. В этот высокотемпературный поток газа подается порошковый материал, который нагревается до пластичного состояния и уносится на основу, где образует покрытие (см. книгу В.А.Линик, П.Ю.Пекшев. «Современная техника газотермического нанесения покрытий». - М., Машиностроение, 1985, с.7). 

Известно предложение, позволяющее увеличить протяженность «активной» зоны пламени путем формирования вторичного соосного факела, горящего с отрывом на некотором расстоянии от сопла термораспылителя за счет высокой скорости подачи рабочей смеси (SU №1787171 A3, C23C4/12, опубл. 07.01.1993 г.). 

Наиболее близким к заявляемому техническому решению, является способ газопламенного напыления металлических порошков (патент RU № 2169792 C2, МПК С23С 4/12, опубл.27.06.2001 г.), включающий введение в пламя, образованное при сгорании ацетилена и кислорода, струи, состоящей из транспортирующего газа-аммиака и напыляемого порошка. В результате диссоциации аммиака (NH3→N+3H) в ядре основного пламени и внешнего бескамерного горения смеси атомарного водорода с воздухом происходит удлинение факела, выравнивание профилей температур, интенсификация процесса передачи тепла от струи к порошку. 

Однако при значительном удлинении факела необходимо проведение дополнительных мероприятий по повышению скорости истечения струи стабилизирующей физико-механические свойства покрытия. 

По своим свойствам аммиак очень ядовит, вдвое легче воздуха, смесь с которым взрывоопасна. Работа с газом относится к работам с повышенной опасностью и регламентируется ПОТ Р О-14000-005-98 («Положение. Работы с повышенной опасностью. Организация проведения».) 

В силу вышеназванных причин при работе с газообразным аммиаком у предприятий и персонала возникает гораздо больше организационных и технических проблем связанных не только с закупкой, использованием и хранением газа, но и с разрешительной системой. Этим очевидно и обусловлено отсутствие коммерческой востребованности способа. 

Задача предлагаемого изобретения - повышение физико-механических свойств покрытия поверхностей деталей машин и инструмента и снижение опасности в работе. 

Сущность изобретения заключается в том, что способ газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством термораспылителя, включающий активирование пламени образованного при сгорании ацетилена и кислорода путем подачи исходной активирующей добавки в виде вводного раствора аммиака до термического контакта с ядром основного пламени через термический диссоциатор, установленный соосно внутри центрального канала, при этом глубина его проникновения в высокотемпературное ядро основного пламени регулируется.

Технический результат направлен на повышение физико-механических свойств порошковых покрытий поверхностей деталей машин и инструментов.  

Технический результат достигается тем, что в предлагаемом способе газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством термораспылителя с помощью активированного газового пламени предусматривается возможность регулирования протяженности активной зоны пламени и скорости движения расплавленных напыляемых частиц введением под давлением исходной активирующей добавки в виде водного раствора аммиака в удлиненной до термического контакта с ядром основного пламени центральный канал термораспылителя за счет термического диссоциатора. На выходном участке диссоциатора длиной 10-15 мм в условиях ограниченного объема и температуре ~ 1000°С идет интенсивная многократная диссоциация двигающегося водного раствора с образованием на выходе термоактивирующей струи дополнительных объемов горючего газа в виде атомарного водорода и высокоскоростной струи перегретого водяного пара. 

Растворимость аммиака в воде равна 700:1 при 20°С по формуле NH3+H2O=NH4OH. В промышленных масштабах аммиачная вода поставляется в виде 25% раствора следующих марок: 

Марка % NH3 ГОСТ (ТУ)
Техническая 25 ГОСТ 9-92
ЧДА (чистый для анализа) 25 ГОСТ 3760-79

Согласно ГОСТУ 12.1.007 аммиачная вода относится к 4 классу опасности. Это значит, что она является умеренно-опасным для человека, но работа с ним все же несет в себе некоторые риски для здоровья людей. Поэтому при хранении, транспортировке и использовании аммиачной воды необходимо соблюдать Правила безопасности ПБ03-182-98. 

Гидроксид аммония (аммиачная вода) неустойчив и при температуре 100°С полностью диссоциирует по формуле: 

NH4OH→100℃NH3↑+H2O↑ 

Во время движения и нагрева водного раствора аммиака по удлиненному центральному каналу термораспылителя, например УПН-8-68, на выходе нагретого до ~ 1000°С пламенем участка канала происходит полная диссоциация аммиака NH3→ N+3Н и перегрев паров воды. В результате внешнего бескамерного горения смеси атамарного водорода с воздухом и выброса струи перегретого пара происходит удлинение факела, выравнивание профилей температур, интенсификация процесса передачи тепла от струи к порошку, а также повышение скорости (кинетической энергии) объемами перегретого водяного пара. 

Способ поясняется чертежом, в котором представлена схема структуры газового факела, где L – длина неограниченной стехиометрическими соотношениями, увеличенной до требуемой для гарантированного расплавления порошкового материала, «активной» зоны. 

Термораспылитель состоит из центрального канала 1, внутри которого соосно с центральным каналом 1 установлен трубчатый термический диссоциатор 2, для регулирования глубины проникновения на 15 – 20 мм в высокотемпературное, около 32000 С ядро основного пламени.

Способ достигается подачей через удлиненный до термического контакта с ядром пламени центральный канал термораспылителя в «активную» зону струи дополнительного количества атомарного водорода при неизменном расходе исходных компонентов основной горючей смеси. где на выходном участке диссоциатора, установленного соосно в центральном канале длиной 10-15 мм в условиях ограниченного объема и температуре ~1000°С идёт интенсивная многократная диссоциация движущегося раствора с образованием на выходе термоактивирующей струи атомарного водорода и повышающих скорость пламени перегретых паров и введение напыляемого порошкового материала в струе воздуха под срез сопла термораспылителя.

Здесь за счёт регулируемого углубления вылета термического диссоциатора в высокотемпературную (~3300°С) зону пламени обеспечивается максимальный рост температуры соизмеримой с температурой плавления материала металлического канала. Таким образом, в условиях ограниченного объема идет интенсивная, многократная диссоциация водного раствора с образованием на выходе термоактивирующей струи. Водород, имея меньшую скорость горения и не требующий для этого избытка воздуха (кислорода), в широких пределах увеличивает длину пламени. 

При осуществлении способа можно использовать любое серийное оборудование, работающее с применением любых известных горючих газов. Концентрированные водные растворы аммиака, с неистёкшим сроком годности, пригодны для получения покрытий без какой-либо подготовки. 

При использовании комплекта установки УПН-8-68 напыляемый порошковый материала подавался в активированное пламя под срез сопла. Подача водного раствора аммиака дозировалось визуально, по необходимой для проплавления конкретного размера частиц порошкового материала длине факела специальным вентилем. 

Качественные характеристики напыленного слоя контролировались образцами – «свидетелями». Прочность сцепления газопламенных покрытий из сплавов на никелевой основе, установленная по клеевой методике превышает 23 МПа.

Способ газопламенного напыления порошкового материала с получением покрытия на никелевой основе посредством термораспылителя, включающий активирование пламени, образованного при сгорании ацетилена и кислорода, и подачу порошкового материала под срез сопла термораспылителя, отличающийся тем, что в качестве активирующей добавки используют водный раствор аммиака, активирование пламени осуществляют путем подачи активирующей добавки до термического контакта с ядром основного пламени через термический диссоциатор, установленный соосно внутри центрального канала термораспылителя, при этом регулируют глубину его проникновения в высокотемпературное ядро основного пламени.
Способ газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством термораспылителя
Источник поступления информации: Роспатент

Showing 1-10 of 186 items.
13.01.2017
№217.015.8dc0

Способ штамповки деталей из металлов и сплавов и пресс для его осуществления

Изобретение относится к области обработки давлением и может быть использовано для выполнения технологических операций штамповки эластичным пуансоном при изготовлении несимметричных деталей сложной формы толщиной 0,01-0,3 мм. На заготовку воздействуют статической нагрузкой до получения...
Тип: Изобретение
Номер охранного документа: 0002605011
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.90ce

Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу

Изобретение относится измерительным информационным системам, в частности к системам для измерения емкости и сопротивления и может быть использовано для измерения неэлектрических величин резистивными и емкостными датчиками в беспроводных системах контроля и управления. Микроконтроллерный...
Тип: Изобретение
Номер охранного документа: 0002603937
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9131

Универсальный набор для строительства малоэтажных зданий и сооружений

Изобретение относится к области строительства и может быть использовано при возведении малоэтажных зданий различных конструктивных систем. Цель изобретения - создание универсального набора элементов, который может использоваться во всех трех системах: брусчатой, стоечной и легкокаркасной, при...
Тип: Изобретение
Номер охранного документа: 0002605654
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9a08

Способ создания гидроизоляции

Изобретение относится к строительству, а именно к созданию вертикальной и горизонтальной гидроизоляции фундаментов, стен, и может быть использовано при возведении новых, а также реконструкции (восстановлении) существующих зданий и сооружений. Способ создания гидроизоляции включает...
Тип: Изобретение
Номер охранного документа: 0002609511
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.9f09

Бетонная смесь

Изобретение относится к составам мелкозернистых бетонных смесей, в том числе песчаных, используемых для изготовления бетонных и железобетонных изделий и конструкций. Технический результат - снижение расхода цемента и повышение трещиностойкости песчаного бетона после тепловлажностной обработки....
Тип: Изобретение
Номер охранного документа: 0002606147
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.af78

Конструкция усиления железобетонной многопустотной плиты перекрытия

Изобретение относится к строительству, в частности, к конструкциям усиления железобетонных многопустотных плит перекрытия, доступ к которым сверху невозможен, например, плит перекрытия, используемых преимущественно в зданиях с совмещенной кровлей. Техническим результатом является увеличение...
Тип: Изобретение
Номер охранного документа: 0002610951
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.b31a

Устройство терминального управления на основе вариационных принципов

Устройство терминального управления на основе вариационных принципов содержит блок отношения, пять блоков сумматоров, четырнадцать блоков умножения, блок вычисления производной, блок линии задержки, вход эталонного сигнала, блок хранения констант, соединенных определенным образом....
Тип: Изобретение
Номер охранного документа: 0002613623
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b65e

Устройство объединения медицинских изображений

Изобретение относится к информационно-измерительным устройствам и может быть использовано в вычислительной технике, в системах управления и обработки сигналов. Техническим результатом является обеспечение объединенного изображения со сглаженными границами перехода. Устройство содержит: регистр...
Тип: Изобретение
Номер охранного документа: 0002614545
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b96a

Биполярно-полевой мультидифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня. Для этого предложен биполярно-полевой мультидифференциальный...
Тип: Изобретение
Номер охранного документа: 0002615071
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b973

Прецизионный двухкаскадный дифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении коэффициента усиления дифференциального сигнала в разомкнутом состоянии двухкаскадного ОУ до уровня 90÷400 дБ....
Тип: Изобретение
Номер охранного документа: 0002615070
Дата охранного документа: 03.04.2017
Showing 1-3 of 3 items.
25.08.2017
№217.015.a231

Установка горячей штамповки порошковых материалов

Изобретение относится к горячей штамповке деталей из порошковых заготовок. Установка содержит накопитель порошковых заготовок, электропечь сопротивления, индуктор, пресс горячего прессования, штамп, механизм подачи порошковых заготовок из индуктора в штамп и выталкиватель с механизмом удаления...
Тип: Изобретение
Номер охранного документа: 0002606823
Дата охранного документа: 10.01.2017
22.09.2018
№218.016.88d4

Способ газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством термораспылителя

Изобретение относится к области газотермических технологий и может быть использовано при нанесении порошковых покрытий методом низкоскоростного газопламенного напыления. Способ газопламенного напыления порошкового покрытия на никелевой основе посредством термораспылителя включает активирование...
Тип: Изобретение
Номер охранного документа: 0002667266
Дата охранного документа: 18.09.2018
02.07.2019
№219.017.a2e8

Активный rc-фильтр для обработки сигналов пьезоэлектрических датчиков

Изобретение относится к измерительной технике и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики активного RC-фильтра для обработки пьезоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002692967
Дата охранного документа: 28.06.2019
+ добавить свой РИД