×
27.11.2019
219.017.e722

Результат интеллектуальной деятельности: БИЦЕОЛИТНЫЙ КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен микро-мезопористый катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, мас.%: цеолит типа ZSM-5 -10,0-75,0, цеолит типа ZSM-12 - 5,0-70,0, гамма-оксид алюминия - остальное до 100 и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. Технический результат заключается в использовании в качестве активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12, который способствует реализации бимолекулярного механизма изомеризации метаксилола и вовлечению в него продуктов диспропорционирования этилбензола, что приводит к повышению конверсии последнего и выхода целевого пара-ксилола. Использование в структуре активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12 позволяет снизить долю реакций диспропорционирования ксилолов до толуола, протекающих в микропорах цеолита ZSM-5, и, как следствие, сократить потери ксилолов. 1 табл., 6 пр.

Настоящее изобретение относится к области катализаторов изомеризации ароматического сырья и может быть использовано в нефтехимической и нефтеперерабатывающей отраслях промышленности.

Моноароматические углеводороды, получаемые в процессе риформинга и пиролиза бензина, широко применяются как сырье для органического синтеза. Среди них особую ценность представляет пара-ксилол, который служит сырьем в производстве терефталевой кислоты - мономера для полиэтилентерефталата, необходимого в получении полиэфирных волокон, пленок, лавсана и другой продукции.

Основным процессом получения пара-ксилола является изомеризация орто- и мета-ксилолов в присутствии кислотных катализаторов. Наиболее перспективными являются твердые кислотные катализаторы, состоящие из носителя, связующего и одного или нескольких активных металлов. К основным требованиям, предъявляемым к носителям, относятся: большая удельная поверхность, наличие кислотных центров, достаточный для прохождения сырья к активным центрам объем пор, термическая и механическая устойчивость.

В качестве активной фазы носителя для катализаторов изомеризации ароматических углеводородов С-8 часто используются цеолиты, причем цеолит типа ZSM-5 - один из наиболее применяемых (RU 2360736, 2009, CN 105582978, 2016, US 5981817, 1999). ZSM-5 представляет собой алюмосиликатный материал со структурой типа MFI, имеющий размер пор 5-7 А. К преимуществам катализаторов на основе ZSM-5 относятся высокая кислотность и селективность по целевому продукту. Основной недостаток связан с небольшим размером пор цеолита, что затрудняет прохождение ароматического сырья к активным центрам и приводит к снижению конверсии и ускоренной дезактивации каталитической системы за счет коксования.

В качестве активной фазы носителя для катализаторов изомеризации ароматических углеводородов С-8 могут быть использованы аморфные оксиды алюминия типа МСМ-41 (ЕР 1250287, 2007), цеолиты типа UZM-54 (US 9890094, 2018), EUO (CN 102909057, 2014), MTW (CN 102105225, 2011, CN 101208283, 2008, US 7745677, 2010).

В патенте CN 101208283, 2008 описан катализатор, носитель которого состоит из цеолита типа ZSM-12 и оксида алюминия. В патенте US 7745677, 2010 катализатор для изомеризации ксилолов готовят на основе цеолита типа MTW путем пропитки раствором активного металла и солями щелочных металлов I группы. ZSM-12 - синтетический алюмосиликат со структурой MTW и высоким содержанием оксида кремния, имеющий одномерную систему каналов. По сравнению с цеолитами MFI размер пор указанного цеолита больше и составляет 0,56×0,61 нм.

В патенте CN 102105225, 2011 описан катализатор, который состоит из цеолита типа ZSM-12, металла VIII группы и связующего - оксида алюминия. При этом катализатор содержит следующие компоненты, % масс.: цеолит ZSM-12 1-9, платина 0,3 (в расчете на цеолит), оксид алюминия - остальное. Испытания катализатора проводят на сырье, содержащем смесь этилбензола, ксилолов, а также ароматические и насыщенные углеводороды С-8 при температуре 387°С, объемной скорости подачи сырья 3,5 ч-1, объемном соотношении Н2/сырье, равном 4. В указанных условиях конверсия этилбензола составляет 40,5-55,7% отн., при этом в полученной смеси продуктов содержание пара-ксилола составляет 17,7-18,5% масс., а содержание орто-ксилола составляет 16,7-18,1%. масс. Недостаток указанного катализатора заключается в низкой эффективности (малая величина конверсии этилбензола и содержания пара-ксилола в продуктах).

Наиболее близким аналогом к указанному изобретению является катализатор изомеризации ароматических углеводородов, описанный в патенте RU 2676706, 10.01.2019. Указанный катализатор состоит из носителя, содержащего цеолит типа ZSM-5 (10,0-75,0% масс.), мезопористые алюмосиликатные нанотрубки (5,0-70,0% масс.), гамма-оксид алюминия остальное до 100% масс. и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора, причем активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.

Недостаток указанного катализатора заключается в недостаточной величине конверсии этилбензола, что, вероятно, связано с невысокой локальной кислотностью, обусловленной наличием алюмосиликатных нанотрубок, а также с диффузными факторами. Кроме того, использование данного катализатора приводит к значительным потерям целевых ксилолов, чему способствуют повышенные значения температур процесса, а также высокая кислотность цеолита типа ZSM-5. Таким образом, известный катализатор недостаточно эффективен.

Проблема, на решение которой направлено настоящее изобретение, заключается в создании катализатора изомеризации ароматических углеводородов С-8, обладающего повышенной эффективностью, в частности, более высокой активностью, приводящей к увеличению конверсии этилбензола и выхода целевого пара-ксилола, а также к снижению потерь целевых орто- и параксилолов.

Указанная проблема решается созданием катализатора изомеризации ароматических углеводородов С-8, состоящего из носителя, содержащего, % масс.:

- цеолит типа ZSM-5 10,0-75,0
- цеолит типа ZSM-12 5,0-70,0
- оксид алюминия остальное, до 100

и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора, причем активная фаза носителя, состоящая из цеолитов типа ZSM-5 и ZSM-12, имеет систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12.

Достигаемый технический результат заключается в использовании в качестве активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12, который способствует реализации бимолекулярного механизма изомеризации метаксилола и вовлечению в него продуктов диспропорционирования этилбензола, что приводит к повышению конверсии последнего и выхода целевого пара-ксилола. Кроме того, использование в структуре активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12 позволяет снизить долю реакций диспропорционирования ксилолов до толуола, протекающих в микропорах цеолита ZSM-5, и, как следствие, сократить потери ксилолов.

Описываемый катализатор получают следующим образом.

На первом этапе получают алюмосиликатный материал ZSM-5. К смеси тетраэтоксисилана последовательно добавляют водные растворы бромида тетрапропиламмония и гидроксида натрия. Полученный гель выдерживают при 150-180°С в течение 48-96 часов в автоклаве, после этого образовавшийся осадок отфильтровывают, промывают, сушат при 80-110°С и прокаливают в токе воздуха при температуре 500-600°С.

На втором этапе получают алюмосиликатный материал ZSM-5/ZSM-12. Полученный на первом этапе ZSM-5 диспергируют и к нему добавляют коллоидный раствор диоксида кремния. После перемешивания в смесь добавляют смесь октадекагидрата сульфата алюминия, воды, бромида тетраэтиламмония и гидроксида натрия, взятых в расчетных количествах. Полученную смесь выдерживают в автоклаве при 140-156°С в течение 80-120 часов, после чего образовавшийся осадок отфильтровывают, промывают, сушат при 80-110°С и прокаливают в токе воздуха при температуре 500-600°С в течение 2-12 часов. Образовавшийся материал обрабатывают раствором хлорида аммония с концентрацией 0,5 М в течение 14-24 часов. Затем осадок отфильтровывают, промывают, сушат и прокаливают на воздухе при 500-600°С в течение 2-12 часов. В результате получают активную фазу носителя, состоящую из цеолитов типа ZSM-5 и ZSM-12, имеющую систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12 (иерархический алюмосиликатный материал - бицеолит ZSM-5/ZSM-12).

На следующем этапе полученный бицеолит ZSM-5/ZSM-12 формуют в виде экструдатов диаметром 0,5-3 мм и длиной 1-5 мм. В качестве связующего используют бемит, в качестве пептизатора - 0,1-1,0 М раствор азотной кислоты. Экструдаты сушат в течение 8-24 часов на воздухе при температуре 60-140°С и прокаливают в при температуре 500-600°С в течение 2-12 часов. Металл платиновой группы наносят на полученный носитель методом пропитки по влагоемкости из водного раствора соли металла. Катализатор высушивают при температуре 60-160°С в течение 12-24 часов.

Изомеризацию сырья, содержащего этилбензол, пара-, орто- и мета-ксилол, проводят в диапазоне температур 340-440°С, диапазоне давлений водорода 0,5-3,0 МПа, при мольном соотношении Н2/сырье, равном 2-10:1 и объемной скорости подачи сырья 1-6 ч-1.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающие его.

Пример 1.

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 20,0, цеолит типа ZSM-12 - 40,0, гамма-оксид алюминия 40,0 и нанесенной на носитель платины в количестве 0,5% от массы катализатора. При этом активная фаза носителя имеет систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12 (вышеописанный иерархический алюмосиликатный материал - бицеолит ZSM-5/ZSM-12).

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10,0, пара-, орто- и мета-ксилол 3,0, 17,0 и 70,0, соответственно. Процесс проводят на установке проточного типа с неподвижным слоем катализатора при температуре 340°С, давлении водорода 1,0 МПа и объемной скорости подачи сырья 6,0 ч-1. При этом получают следующие результаты: конверсия этилбензола составляет 58,8% отн., выход ксилолов - 88,3% масс., содержание в жидких продуктах изомеризации орто- и пара-ксилолов 21,2 и 23,8% масс., соответственно. Результаты приведенного опыта и опытов, описанных в последующих примерах, приведены в таблице.

Пример 2.

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 50,0, цеолит типа ZSM-12 - 20,0, гамма-оксид алюминия 30,0 и нанесенный на носитель палладий в количестве 0,5% от массы катализатора. При этом активная фаза носителя имеет систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12 (вышеописанный иерархический алюмосиликатный материал - бицеолит ZSM-5/ZSM-12).

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10,0, пара-, орто- и мета-ксилол 3,0, 17,0 и 70,0, соответственно. Процесс проводят на установке проточного типа с неподвижным слоем катализатора при температуре 360°С, давлении водорода 1 МПа и объемной скорости подачи сырья 6 ч-1. При этом получают следующие результаты: конверсия этилбензола составляет 73,2% отн., выход ксилолов - 93,7% масс., содержание в жидких продуктах изомеризации орто- и пара-ксилолов 22,2 и 23,5% масс., соответственно.

Пример 3.

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 30,0, цеолит типа ZSM-12 - 30,0, гамма-оксид алюминия 40,0 и нанесенной на носитель платины в количестве 5% от массы катализатора. При этом активная фаза носителя имеет систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12 (вышеописанный иерархический алюмосиликатный материал - бицеолит ZSM-5/ZSM-12).

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10,0, пара-, орто- и мета-ксилол 3,0, 17,0 и 70,0, соответственно. Процесс проводят на установке проточного типа с неподвижным слоем катализатора при температуре 380°С, давлении водорода 1 МПа и объемной скорости подачи сырья 6 ч-1. При этом получают следующие результаты: конверсия этилбензола составляет 94,3% отн., выход ксилолов - 82,5% масс., содержание в жидких продуктах изомеризации орто- и пара-ксилолов 21,9 и 23,0% масс., соответственно.

Пример 4.

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 30,0, цеолит типа ZSM-12 - 30,0, гамма-оксид алюминия 40,0 и нанесенный на носитель палладий в количестве 0,1% от массы катализатора. При этом активная фаза носителя имеет систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12 (вышеописанный иерархический алюмосиликатный материал - бицеолит ZSM-5/ZSM-12).

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10,0, пара-, орто- и мета-ксилол 3,0, 17,0 и 70,0, соответственно. Процесс проводят на установке проточного типа с неподвижным слоем катализатора при температуре 380°С, давлении водорода 1 МПа и объемной скорости подачи сырья 3,5 ч-1. При этом получают следующие результаты: конверсия этилбензола составляет 98,0% отн., выход ксилолов - 81,1% масс., содержание в жидких продуктах изомеризации орто- и пара-ксилолов 21,8 и 23,2% масс., соответственно.

Пример 5.

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 10,0, цеолит типа ZSM-12 - 70,0, гамма-оксид алюминия 20,0 и нанесенной на носитель платины в количестве 0,5% от массы катализатора. При этом активная фаза носителя имеет систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12 (вышеописанный иерархический алюмосиликатный материал - бицеолит ZSM-5/ZSM-12).

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10,0, пара-, орто- и мета-ксилол 3,0, 17,0 и 70,0, соответственно. Процесс проводят на установке проточного типа с неподвижным слоем катализатора при температуре 360°С, давлении водорода 1 МПа и объемной скорости подачи сырья 3,5 ч-1. При этом получают следующие результаты: конверсия этилбензола составляет 56,8% отн., выход ксилолов - 82,1% масс., содержание в жидких продуктах изомеризации орто- и пара-ксилолов 20,8 и 23,5% масс., соответственно.

Пример 6.

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 75,0, цеолит типа ZSM-12 - 5,0, гамма-оксид алюминия 20,0 и нанесенной на носитель платины в количестве 0,5% от массы катализатора. При этом активная фаза носителя имеет систему микро-мезопор, сформированную микропорами цеолита ZSM-5 и мезопорами ZSM-12 (вышеописанный иерархический алюмосиликатный материал - бицеолит ZSM-5/ZSM-12).

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10,0, пара-, орто- и мета-ксилол 3,0, 17,0 и 70,0, соответственно. Процесс проводят на установке проточного типа с неподвижным слоем катализатора при температуре 340°С, давлении водорода 1 МПа и объемной скорости подачи сырья 1 ч-1. При этом получают следующие результаты: конверсия этилбензола составляет 88,5% отн., выход ксилолов - 81,4% масс., содержание в жидких продуктах изомеризации орто- и пара-ксилолов 21,5 и 23,3% масс., соответственно.

Из данных таблицы 1 следует, что все используемые в приведенных примерах катализаторы проявляют высокую активность в реакции изомеризации ароматических углеводородов С-8.

Использование описываемого катализатора, содержащего компоненты в иных концентрациях, входящих в заявленный интервал, приводит к аналогичным результатам. Использование компонентов в количествах, выходящих за данный интервал, не приводит к желаемым результатам.

Таким образом, описываемый катализатор обладает высокой активностью.

Так, конверсия этилбензола составляет до 98,0% отн. (при использовании известного катализатора - до 75% отн.), содержание в продукте изомеризации орто-ксилола - 21,2-22,2% масс.; содержание в продукте изомеризации пара-ксилола - 23,0-23,8% масс., что сравнимо со значениями, полученными при использовании известного катализатора; потеря целевых ксилолов составляет до 3,0% (при использовании известного катализатора до 3,5% масс.). Кроме того, использование описываемого катализатора позволяет проводить изомеризацию ксилолов при более низкой температуре (340°С) с конверсией этилбензола 58,8-88,5% отн., содержанием в продукте изомеризации пара-ксилола - 23,3-23,8% масс и потерей целевых ксилолов 1,9-2,7% масс.

Источник поступления информации: Роспатент

Showing 11-20 of 44 items.
03.07.2019
№219.017.a3c2

Низкотемпературная пластичная смазка

Настоящее изобретение относится к низкотемпературной пластичной смазке для узлов трения и может быть использовано в различных отраслях промышленности, например в нефтепереработке и нефтехимии, машиностроении, энергетике, пищевой промышленности. Сущность: низкотемпературная пластичная смазка...
Тип: Изобретение
Номер охранного документа: 0002693008
Дата охранного документа: 01.07.2019
12.08.2019
№219.017.be93

Наноструктурированный катализатор гидрирования ароматических углеводородов с6-с8

Предложен наноструктурированный катализатор гидрирования ароматических углеводородов С6-С8, состоящий из носителя, содержащего, мас.%: алюмосиликатные нанотрубки 81-85, гидрофобизирующий компонент 15-19, и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы...
Тип: Изобретение
Номер охранного документа: 0002696957
Дата охранного документа: 07.08.2019
12.08.2019
№219.017.be99

Индикаторный элемент для обнаружения и идентификации разливов жидких углеводородов нефти и нефтепродуктов

Изобретение относится к области обнаружения, идентификации и дистанционного мониторинга углеводородных загрязнителей водных сред и может быть использовано для экспрессного визуального обнаружения разливов и утечек жидких углеводородных топлив. Изобретение касается индикаторного элемента для...
Тип: Изобретение
Номер охранного документа: 0002696982
Дата охранного документа: 08.08.2019
02.10.2019
№219.017.cb5e

Способ получения биотоплива

Изобретение описывает способ получения биотоплива, заключающийся в том, что предварительно биомассу микроводорослей смешивают с водой в количестве 90,0-97,0 мас. % с поддержанием в процессе перемешивания жизнедеятельности фотосинтезирующих микроорганизмов, входящих в состав биомассы,...
Тип: Изобретение
Номер охранного документа: 0002701372
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.d136

Пластичная смазка

Изобретение относится к пластичным смазкам, которая может быть использована в механизмах различного назначения, работающих при температуре до 200°С. Сущность: пластичная смазка содержит, мас. %: комплексное кальциевое мыло в виде смеси кальциевого мыла стеариновой кислоты, кальциевого мыла...
Тип: Изобретение
Номер охранного документа: 0002700711
Дата охранного документа: 19.09.2019
02.10.2019
№219.017.d143

Способ обеспечения энерготехнологической эффективности магистрального транспорта газа

Изобретение относится к энергосберегающим технологиям магистрального транспорта газа. Сущность изобретения: для магистрального транспорта газа в блоке расчета параметров регулирования формируют модель базового участка магистрального газопровода, состоящего из головной компрессорной станции,...
Тип: Изобретение
Номер охранного документа: 0002700756
Дата охранного документа: 19.09.2019
12.10.2019
№219.017.d52a

Микро-мезопористый катализатор изомеризации ксилолов

Изобретение относится к области катализаторов для процессов изомеризации ксилолов и сырья, содержащего ароматические углеводороды С-8, и может быть использовано в таких отраслях промышленности, как нефтехимия и нефтепереработка. Микро-мезопористый катализатор изомеризации ксилолов состоит из...
Тип: Изобретение
Номер охранного документа: 0002702586
Дата охранного документа: 08.10.2019
17.10.2019
№219.017.d6bc

Компрессорная установка

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор. Сопло эжектора гидравлически связано через обратный...
Тип: Изобретение
Номер охранного документа: 0002702952
Дата охранного документа: 14.10.2019
04.11.2019
№219.017.de23

Способ получения клатратных гидратов для хранения и транспортировки газов

Изобретение описывает способ получения клатратных гидратов, включающий формирование порошкообразной дисперсии путем смешивания дисперсного гидрофобного порошкообразного диоксида кремния и воды, охлаждение полученной порошкообразной дисперсии до температуры в диапазоне от минус 200°С до минус...
Тип: Изобретение
Номер охранного документа: 0002704971
Дата охранного документа: 01.11.2019
13.11.2019
№219.017.e100

Ингибитор гидратообразования

Изобретение относится к составам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья. Ингибитор...
Тип: Изобретение
Номер охранного документа: 0002705645
Дата охранного документа: 11.11.2019
Showing 11-20 of 143 items.
20.07.2014
№216.012.df35

Флокулянт для очистки воды и способ его получения

Изобретение относится к очистке бытовых и промышленных сточных вод, водоемов и морских акваторий от загрязнений. Флокулянт для очистки воды получают путем сополимеризации смеси мономеров - итаконой кислоты или ее ангидрида, алкилового эфира итаконовой кислоты и амида акриловой или метакриловой...
Тип: Изобретение
Номер охранного документа: 0002522927
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f5e1

Биокатализатор для переэтерификации жиров и способ его получения

Группа изобретений относится к биотехнологии и пищевой промышленности. Предложен способ получения биокатализатора для переэтерификации жиров. Проводят аминирование гранулированного силикагеля или диоксида кремния дисперсностью 0,3-1,0 мм аминопропилтриэтоксисиланом. Затем полученный...
Тип: Изобретение
Номер охранного документа: 0002528778
Дата охранного документа: 20.09.2014
27.10.2014
№216.013.02c5

Способ переработки лигноцеллюлозного сырья

Способ переработки лигноцеллюлозного сырья предусматривает смешивание лигноцеллюлозного сырья с ионной жидкостью - солью замещенного имидазолия, выдерживание под вакуумом при температуре 80-100С и перемешивании, охлаждение, добавление к смеси этанола, перемешивание. Образовавшуюся в результате...
Тип: Изобретение
Номер охранного документа: 0002532107
Дата охранного документа: 27.10.2014
10.12.2014
№216.013.0d7d

Способ добычи вязкой нефти

Изобретение относится к нефтеперерабатывающей промышленности. Технический результат - повышение степени извлечения вязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости...
Тип: Изобретение
Номер охранного документа: 0002534870
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0df1

Способ переработки тяжелого углеводородного сырья

Изобретение относится к нефтепереработке. Изобретение касается обработки тяжелого углеводородного сырья электромагнитным излучением с частотой 40-55 МГц, мощностью 0,2-0,5 кВт, при температуре 50-70°C, атмосферном давлении и времени обработки 1-24 ч, с последующим каталитическим крекингом...
Тип: Изобретение
Номер охранного документа: 0002534986
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0df8

Способ приготовления катализатора для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот

Изобретение относится к способу приготовления катализатора для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот. Данный способ заключается в нанесении на носитель - аморфный оксид алюминия - методом пропитки с последующим просушиванием и прокаливанием...
Тип: Изобретение
Номер охранного документа: 0002534993
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1014

Способ кислотной обработки карбонатного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатного пласта. Способ кислотной обработки карбонатного пласта включает предварительную промывку скважины органическим растворителем, затем последовательную закачку в...
Тип: Изобретение
Номер охранного документа: 0002535538
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.25a5

Модифицированные гадопентетатом производные бета-циклодекстрина

Изобретение относится к медицине. Модифицированные гадопентетатом производные бета-циклодекстрина, отличающиеся тем, что в качестве контрастного средства используют бета-циклодекстрин, содержащий один, два, три остатка гадопентетата или их смесь с общей формулой (CHO)(CHNO)Gd, где n=1-3. 2 н.п....
Тип: Изобретение
Номер охранного документа: 0002541090
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3d47

Способ получения биоэмульгатора

Изобретение относится к биотехнологии. Биоэмульгатор получают путем разрушения клеточных стенок биомассы цианобактерий, добавления к полученному продукту последовательно хлороформа, метанола, водного раствора сульфата аммония с поочередным перемешиванием смесей, образующихся после каждого...
Тип: Изобретение
Номер охранного документа: 0002547175
Дата охранного документа: 10.04.2015
20.12.2015
№216.013.9d0e

Катализатор получения алкадиенов (варианты) и способ получения алкадиенов с его применением (варианты)

Изобретение относится к синтезу основных мономеров синтетического каучука, в частности бутадиена-1,3 и изопрена каталитическим превращением низших спиртов. Описан катализатор получения алкадиенов из низших спиртов состава, мас.%: NaO - 0,1÷0,3, MgO - 30÷40, SiO - остальное и другой...
Тип: Изобретение
Номер охранного документа: 0002571831
Дата охранного документа: 20.12.2015
+ добавить свой РИД