×
26.10.2019
219.017.db19

Результат интеллектуальной деятельности: Способ пастилляции селенида цинка

Вид РИД

Изобретение

№ охранного документа
0002704191
Дата охранного документа
24.10.2019
Аннотация: Изобретение относится к технологии получения селенида цинка – широкозонного полупроводника, применяемого в технике в виде объемных поли- и монокристаллов, а также тонких пленок, получаемых термическим распылением кристаллической крошки, для которого наиболее подходящим является материал с одинаковыми размерами. Для этого используется способ пастилляции селенида цинка путем самопроизвольной кристаллизацией капель в температурном градиенте в атмосфере аргона, при этом капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-7,2⋅10 м/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации имеет значение менее или равное 9,7-10 м/с. Изобретение позволяет получать сферические кристаллы ZnSe стехиометрического состава, имеющие моноблочную структуру. 2 ил., 3 пр.

Изобретение относится к области получения кристаллических материалов.

Селенид цинка - распространенный широкозонный полупроводник, применяемый в технике в виде объемных поли- и монокристаллов, а также тонких пленок. Получение пленок чаще всего проводится термическим распылением кристаллической крошки, максимальные линейные размеры отдельных кусочков которой определяются конкретным процессом и обычно находятся в интервале 1-15 мм. Наиболее качественная крошка изготавливается из кристаллов, выращенных из расплава, так как они не содержат примесей, летучих при температурах термического распыления ZnSe. При этом требуется, чтобы кристаллы имели стехиометрический состав, допускаемые отклонения от которого не должны превышать 0,01% (ат.) как в сторону избытка цинка, так и в сторону избытка селена.

Основной недостаток такой крошки - неправильная форма кусочков. Кристаллический селенид цинка при дроблении скалывается по спайности, образуя кусочки разных размеров. Для термического распыления больше всего подошел бы материал с одинаковыми размерами симметричных, лучше сферических, кусочков, имеющих моноблочную структуру, подразумевающую отсутствие границ с разориентировкой свыше одной угловой минуты. Последнее требование важно, так как границы с большей разориентировкой обычно декорируются примесями (исключение составляют атомно-когерентные границы полисинтетических двойников вращения). Перспективным методом получения крошки с одинаковыми размерами из переплавленного ZnSe представляется пастилляция, то есть кристаллизация капель расплава с приданием им требуемых свойств.

Известен способ пастилляции [Jung-Woo Kim, Joachim Ulrich, Prediction of degree of deformation and crystallization time of molten droplets in pastillation process. International Journal of Pharmaceutics, 257 (2003) 205-215] - аналог, в котором капли органического соединения C22H19NO4, формируемые подогреваемой пипеткой, падают на плоскую поверхность охлаждаемого кристаллизатора и затвердевают. К недостаткам способа, помимо неприменимости его к ZnSe, имеющему температуру плавления 1800 К, следует отнести полусферическую форму затвердевших капель.

Известен способ принудительной кристаллизации переохлажденной капли без отрыва от канала, формирующего капли [A. Miyazaki, Н. Kimura. Crystallization Control of Molten Ba(B0.9Al0.1)2О4 from Supercooled Pendant Drop. Cryst. Res.Technol., 2001, v. 36, N 1, p. 3-8] - аналог, в котором кристаллизация висячей переохлажденной капли расплава Ba(B0.9Al0.1)2О4 инициируется принудительно, путем подвода к низу капли, то есть со стороны, противоположной формирующему каналу, холодного стержня из платины, графита или нитрида бора.

К недостаткам этого способа, помимо неприменимости его для кристаллизации ZnSe, следует отнести сложность реализации из-за необходимости точного подвода стержня к капле и низкую производительность из-за необходимости поштучной кристаллизации капель.

Известен способ самопроизвольной кристаллизации капель ZnSe в температурном градиенте, в атмосфере аргона [Н.Н. Колесников, М.П. Кулаков. Поверхностное натяжение расплава ZnSe. ЖФХ, 1988, т. 62, №9, с. 2513-2515] - прототип, в котором расплав селенида цинка каплями вытекает через капилляр, капли свободно падают в атмосфере аргона через зону охлаждения в приемник капель, находящийся в холодной зоне. Самопроизвольная кристаллизация происходит после отрыва капель от формирующего их канала (капилляра) в процессе падения капель через зону охлаждения.

Селенид цинка при температуре плавления имеет давление собственных паров на уровне 0,11 МПа, причем пары диссоциируют, селен испаряется молекулярно в виде Se2, а цинк - атомарно. Селенид цинка диссоциирует при испарении, при этом коэффициент диффузии паров Se2 в аргоне ниже, чем у паров цинка: при давлении Ar 2,0 МПа и температуре 1800 К - 0,086⋅10-4 и 0,135⋅10-4 м2/с, соответственно [Кулаков М.П., Фадеев А.В. О стехиометрии кристаллов селенида цинка, получаемых из расплава. Изв. АН СССР. Неорган, матер., 1981. Т. 17. №9. С. 1565-1570]. Давление же паров над чистыми расплавами компонентов у Se2 выше, чем у Zn: 26,0 и 6,5 МПа при температуре 1800 К, соответственно [М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников. Определение некоторых свойств расплава селенида цинка и расчет его состава при кристаллизации. Изв. АН СССР, Неорган, матер., 1986, т. 22, №3, с. 399-402]. Это создает условия для отклонения состава от стехиометрии, которое может быть обусловлено как диффузией паров компонентов во внешней среде, так и конвективным уносом паров компонентов с поверхности расплава.

Закристаллизованные капли, полученные по способу-прототипу, имеют стехиометрический состав, что обеспечивается, главным образом, кристаллизацией падающей капли со всей поверхности к центру. При этом на поверхности капли практически мгновенно образуется слой кристаллического ZnSe, защищающийеще не закристаллизованный расплав от испарения, и, соответственно, предотвращающий как диффузионный, так и конвективный унос паров.

Однако и основной недостаток способа-прототипа связан с тем, что кристаллизация капель происходит в температурном градиенте во время падения через зону охлаждения, что задает кристаллизацию по всей поверхности капли. При этом фронт кристаллизации движется с очень большой (оценочно свыше 2⋅10-3 м/с) скоростью. В результате закристаллизованные капли имеют мелкозернистую структуру с обилием границ с высокой разориентировкой, часто растрескиваются под действием остаточных термических напряжений, а форма капель не является сферической. Последнее обстоятельство обусловлено тем, что при движении фронта от всей поверхности капли к центру, при очень большой скорости кристаллизации, в конечный момент затвердевания остаток расплава и паров в центре капли оказывается под давлением, превышающем внешнее давление аргона. Поэтому закристаллизованная оболочка капли прорывается, остаток расплава выплескивается, образуя на поверхности капли закристаллизованный натек, под которым обнаруживается усадочная раковина, преходящая в каверну, идущую до центра закристаллизованной капли.

Задачей предлагаемого способа является получение закристаллизованных капель, сохраняющих стехиометрический состав, и, при этом, имеющих форму, близкую к сферической, и моноблочную структуру.

Эта задача решается в предлагаемом способе пастилляции ZnSe самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона, за счет кристаллизации капель до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9-7,2⋅10-9 м3/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации ≤ 9,7⋅10-6 м/с.

Предлагаемые технологические параметры процесса выбраны экспериментально.

Процесс получения отдельной закристаллизованной капли начинается с ее формирования. Поскольку в предлагаемом способе не предусматривается быстрая кристаллизация по всей поверхности капли, выбор скорости формирования капли и давления аргона влияет на состав ZnSe.

На графике Фиг. 1 показаны экспериментальные зависимости состава капель, выраженного в концентрации цинка в атомных процентах, от давления аргона (кривая 1) и от объемной скорости формирования капли (кривая 2). Видно, что стехиометрический состав капель (50,00±0,01% ат. Zn) достигается только при объемной скорости формирования капель 6,7⋅10-9-7,2⋅10-9 м3/с и давлении аргона 5,92-6,35 МПа, причем эти параметры связаны между собой.

При давлении Ar менее 5,92 МПа и объемной скорости формирования капель свыше 7,2⋅10-9 м3/с преобладает диффузионный механизм изменения состава расплава в капле, который обогащается селеном, то есть компонентом с меньшим коэффициентом диффузии паров в аргоне.

При давлении аргона свыше 6,35 МПа и объемной скорости формирования капли ниже 6,7⋅10-9 м3/с преобладает изменение состава расплава в капле за счет уноса паров компонентов конвективным потоком Ar, при этом состав обогащается цинком, имеющим меньшее давление собственного пара по сравнению с селеном.

После формирования капли осуществляется ее самопроизвольная кристаллизация. Для проведения процесса необходимо задать градиент температуры в месте формирования капли так, чтобы при достижении требуемого диаметра капли ее нижний край (противоположный формирующему каналу) оказался при температуре ниже температуры кристаллизации, составляющей 1800 К. Кристаллизация начинается в нижней части капли, фронт кристаллизации движется в направлении формирующего канала. Отрыв закристаллизованной капли от расплава в формирующем канале происходит за счет разности плотностей расплава и кристалла (ZnSe имеет отрицательный объемный эффект кристаллизации 13±2% [М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников. Определение некоторых свойств расплава селенида цинка и расчет его состава при кристаллизации. Изв. АН СССР, Неорган, матер., 1986, т. 22, №3, с. 399-402]).

Для получения закристаллизованных капель с моноблочной структурой необходимо выбрать скорость движения фронта кристаллизации, основным определяющим фактором для которой будет совокупность тепловых условий в зоне формирования капель. При этом технологическим параметром процесса следует считать именно скорость, так как тепловые условия, необходимые для получения одной и той же скорости движения фронта кристаллизации, могут отличаться при разных вариантах технического исполнения пастилляторов (устройств для пастилляции).

Скорость движения фронта кристаллизации ≤ 9,7⋅10-6 м/с выбрана экспериментально. При скоростях выше 9,7⋅10-6 м/с закристаллизованные капли не имеют моноблочной структуры - в них появляются границы блоков с разориентировкой свыше одной угловой минуты.

Предлагаемый способ позволяет получать моноблочные кристаллы ZnSe, имеющие стехиометрический состав и практически сферическую форму, что иллюстрируется фотографией на Фиг. 2.

Пример 1.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 7,2⋅10-9 м3/с, давление аргона составляет 5,92 МПа, а скорость движения фронта кристаллизации 9,7⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка стехиометрического состава, имеющие моноблочную структуру.

Пример 2.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,9⋅10-9 м3/с, давление аргона составляет 6,0 МПа, а скорость движения фронта кристаллизации 9,3⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка, показанные на фотографии Фиг. 2. Кристаллы имеют стехиометрический состав и моноблочную структуру.

Пример 3.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9 м3/с, давление аргона составляет 6,35 МПа, а скорость движения фронта кристаллизации 9,0⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка стехиометрического состава, имеющие моноблочную структуру.

Способ пастилляции селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте в атмосфере аргона, отличающийся тем, что капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10 - 7,2⋅10 м/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации ≤9,7⋅10 м/с.
Способ пастилляции селенида цинка
Способ пастилляции селенида цинка
Источник поступления информации: Роспатент

Showing 11-20 of 91 items.
27.06.2014
№216.012.d9fb

Способ получения наноалмазов при пиролизе метана в электрическом поле

Изобретение может быть использовано в медицине при производстве препаратов для послеоперационной поддерживающей терапии. Проводят термическое разложение метана в герметичной камере на подложках из кремния или никеля при давлении 10-30 Торр и температуре 1050-1150 °С. Нагрев осуществляют...
Тип: Изобретение
Номер охранного документа: 0002521581
Дата охранного документа: 27.06.2014
10.12.2014
№216.013.0cf2

Система автоматической классификации гидролокатора ближнего действия

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Технический результат - обеспечение классификации объекта, обнаруженного гидролокатором ближней обстановки, в автоматическом...
Тип: Изобретение
Номер охранного документа: 0002534731
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1328

Генератор субтерагерцового и терагерцового излучения на основе оптического транзистора

Изобретение относится к области генерации электромагнитного излучения в субтерагерцовом и терагерцовом диапазонах частот. Генератор субтерагерцового и терагерцового излучения включает источник лазерного излучения, электрическую цепь с источниками напряжения и импедансной нагрузкой, и оптически...
Тип: Изобретение
Номер охранного документа: 0002536327
Дата охранного документа: 20.12.2014
20.03.2015
№216.013.3499

Люминесцентное литий-боратное стекло

Изобретение относится к области люминесцентных стекол для преобразования ультрафиолетового излучения в белый цвет. Техническим результатом изобретения является создание люминесцентного стекла с высокой прозрачностью в видимом диапазоне. Люминесцентное литий-боратное стекло на основе тетрабората...
Тип: Изобретение
Номер охранного документа: 0002544940
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3f8e

Ампула для выращивания кристаллов в условиях микрогравитации

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов в условиях микрогравитации. Ампула содержит герметичный корпус 1 из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель 4 с загрузкой селенида галлия 5 и графитовые...
Тип: Изобретение
Номер охранного документа: 0002547758
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.51b3

Устройство для выращивания из расплава тугоплавких волокон со стабилизацией их диаметра

Изобретение относится к производству профилированных высокотемпературных волокон тугоплавких оксидов, гранатов, перовскитов. Устройство содержит ростовую камеру 1 с установленными в ней тиглем 2 для расплава с формообразователем 3, нагреватель 4 тигля 2, экраны 5, затравкодержатель 6, средство...
Тип: Изобретение
Номер охранного документа: 0002552436
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.5c65

Способ обработки гидроакустического сигнала шумоизлучения объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов. Способ обработки гидроакустического сигнала...
Тип: Изобретение
Номер охранного документа: 0002555194
Дата охранного документа: 10.07.2015
20.11.2015
№216.013.914f

Способ изготовления контактного электродного материала с контролируемой пористостью для батарей твердооксидных топливных элементов

Изобретение относится к области твердооксидных топливных элементов (ТОТЭ) планарной конструкции, а именно к сборке отдельных мембранно-электродных блоков и деталей токовых коллекторов (интерконнекторов) в батареи для увеличения снимаемой мощности. Задачей настоящего изобретения является...
Тип: Изобретение
Номер охранного документа: 0002568815
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9ea0

Холодный катод

Изобретение относится к области получения углеродных наноструктур, а именно слоев углеродных нанотрубок на металлических подложках, применяемых в качестве холодных катодов (автоэлектронных источников эмиссии). Технический результат - создание простого в изготовлении холодного катода без...
Тип: Изобретение
Номер охранного документа: 0002572245
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a220

Композиция углеродной заготовки для получения sic/c/si керамики и способ получения sic/c/si изделий

Изобретение относится к получению керамики на основе SiC/C/Si, которая может быть использована для производства конструкционных изделий, используемых в нефтедобывающей и нефтеперерабатывающей, химической, металлургической и пищевой промышленности, ВПК, ЖКХ. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002573146
Дата охранного документа: 20.01.2016
Showing 11-20 of 40 items.
10.05.2016
№216.015.3dca

Способ дифференциальной диагностики глиом головного мозга человека

Изобретение относится к области молекулярной биологии и медицины, в частности к онкологии. Из образца опухолевой ткани головного мозга выделяют суммарный пул РНК (в том числе содержащий и микроРНК) любым из известных способов. Далее проводят измерение уровней экспрессии 10 микроРНК, а именно...
Тип: Изобретение
Номер охранного документа: 0002583871
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.823a

Способ нанесения массивов углеродных нанотрубок на металлические подложки

Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об.% и гелий - остальное. Металлические...
Тип: Изобретение
Номер охранного документа: 0002601335
Дата охранного документа: 10.11.2016
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
10.05.2018
№218.016.4af7

Способ интраоперационного забора биоптата глиомы и морфологически неизменной ткани головного мозга для молекулярно-генетических исследований

Изобретение относится к области медицины, в частности к онкологии. Предложен способ интраоперационного забора биоптата глиомы и морфологически неизмененной ткани головного мозга для молекулярно-генетических исследований. Под нейронавигационным контролем осуществляют доступ к опухоли. При...
Тип: Изобретение
Номер охранного документа: 0002651749
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
20.02.2019
№219.016.c16c

Способ получения нанопорошка селенотеллурида цинка

Способ получения нанопорошка селенотеллурида цинка состава ZnSeTe относится к области получения сцинтилляционных материалов и может быть использован в нанотехнологиях, связанных с применением нанопорошков. Технический результат - получение нанопорошка селенотеллурида цинка состава ZnSeTe...
Тип: Изобретение
Номер охранного документа: 0002415805
Дата охранного документа: 10.04.2011
21.03.2019
№219.016.eb97

Электрод для дуговой плавки металлов

Изобретение относится к электроду для дуговой плавки металлов и может быть использовано для плавления металлических порошков, прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы в среде защитных газов. Электрод для дуговой плавки металлов содержит...
Тип: Изобретение
Номер охранного документа: 0002682553
Дата охранного документа: 19.03.2019
28.06.2019
№219.017.9968

Устройство компенсации активных помех

Изобретение относится к радиолокации, может быть использовано в аппаратуре обнаружения целей на фоне комбинированных помех - активных излучений и пассивных отражений. Технический результат - повышение эффективности подавления активных помех, действующих по главному лепестку диаграммы...
Тип: Изобретение
Номер охранного документа: 0002692690
Дата охранного документа: 26.06.2019
19.07.2019
№219.017.b631

Способ получения кристаллов cdas

Изобретение относится к области выращивания кристаллов диарсенида трикадмия. Кристаллы CdAs получают кристаллизацией капель расплава стехиометрического состава, свободно падающих в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель...
Тип: Изобретение
Номер охранного документа: 0002694768
Дата охранного документа: 16.07.2019
03.10.2019
№219.017.d196

Способ изготовления образцов фуллерена с для спектроскопии

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C в полированную поверхность бромида калия. Способ...
Тип: Изобретение
Номер охранного документа: 0002701823
Дата охранного документа: 01.10.2019
+ добавить свой РИД