×
17.10.2019
219.017.d683

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСТВА ПРИ ОБТЕКАНИИ НАГРЕТОГО ТЕЛА ЗА СЧЕТ ПИРОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ТЕПЛА В ВИХРЕВОМ СЛЕДЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплотехнике и может быть использовано в области энергетики, в том числе альтернативной, микроэлектроники и экологии, при использовании и преобразовании низкопотенциального тепла напрямую в электричество. Задачей изобретения является создание нового эффективного способа преобразования низкопотенциального тепла напрямую в электричество. Поставленная задача решается тем, что в способе получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, при котором при обтекании нагретого тела потоками газа или жидкости за ним образуется вихревой след, в который помещают электрогенератор для получения электрической энергии, согласно изобретению в вихревой след помещают пироэлектрический генератор для прямого преобразования тепловых пульсаций в электрическую энергию, в качестве обтекаемых нагретых тел используют препятствия различной конфигурации, а поверхность обтекаемого тела нагревается за счет проходящего в нем технологического потока жидкости или газа. 3 ил.

Изобретение относится к теплотехнике и может быть использовано в области энергетики, в том числе альтернативной, микроэлектроники и экологии, при использовании и преобразовании низкопотенциального тепла напрямую в электричество. Изобретение может быть использовано в научно-исследовательских работах по экспериментальному исследованию гидродинамических неизотермических течений, используя пироэлектрическое преобразование тепла и пироэлектрический эффект различных материалов.

Рассеянная в окружающей среде тепловая энергия в настоящее время является предметом повышенного интереса в результате растущих энергетических потребностей, и, как средство для создания автономных систем с автономным питанием.

Тепло от окружающей среды остается почти повсеместным и обильным источником энергии, которая часто теряется, как низкопотенциальное тепло (~25-200°C). Отработанное тепло относится к энергии, выделяемой в качестве побочного продукта; охлаждения, или циклов теплового насоса. Его часто выпускают в атмосферу, реки, океаны или в виде горячих газов, горячей воды.

К сожалению, меньше всего решений существует для преобразования среднего и низкого класса тепловых отходов в пригодные для использования формы энергии. Если отработанное тепло может быть эффективно переработано в полезные формы энергии, оно может выступать в качестве потенциального источника для удовлетворения растущего спроса на энергию. Менее широко исследуемая территория - пироэлектрический сбор энергии, в котором колебания температуры преобразуются в электрическую энергию, хотя, возможность для преобразования тепловой энергии в электрическую энергию с использованием сегнетоэлектрических материалов была рассмотрена достаточно давно.

Создание устройств пироэлектрического преобразования тепла тормозится малой их эффективностью, и соответственно КПД. Известен способ преобразования тепловой энергии в электрическую с помощью пироэлектрических преобразователей, при котором пироэлектрический элемент попеременно соприкасается с нагретым и холодным телом [Ravindran S.K.T., Kroener M., Woias P. A standalone pyroelectric harvester for thermal energy harvesting. PowerMEMS 2012, Atlanta, GA, USA, December 2-5, 2012]. В экспериментах при разности температур тел 85 К было получена мощность 15,7 мкВт.

Однако с ростом минимизации и при интеллектуальном управлении микроэлектроникой пироэлектрический эффект возможно использовать для микродатчиков и источников длительного питания.

В системах вентиляции, охлаждения при обтекании различных нагретых элементов воздушными потоками возникают вихревые структуры, которые создают пульсации температуры в определенных местах в своем следе. Эти пульсации температуры возможно использовать в качестве источника пироэлектрического эффекта для получения электричества малой мощности.

Известно устройство (патент ЕР 2953259, H02N 2/18, 2015 г.), которое в основном состоит из пьезоэлектрического элемента, соответствующим образом прикрепленного к аэродинамическому придатку, имеющему особый размер по форме и механическим характеристикам для использования специфического эффекта потока воздуха (в частности, один из эффектов, которые в техническом отношении называются «разрывы вихрей», «флаттер», или «вибрации, вызванные турбулентным потоком») для производства электрической энергии.

Известно решение (Weinstein L.A., Cacan M.R., So P.M., Wright P.K. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows // Smart Mater. Struct. 2012. V. 21. 045003) и решение (Alhadidi A.H., Daqaq M.F.A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon // Appl. Phys. Lett. 2016. V. 109. 033904), где показана возможность получения пьезоэлектричества малой мощности в узком диапазоне скоростей при специальных конструкциях. В первом решении приводится способ преобразования энергии с помощью пьезоэлектрика. Способ заключается в том, что за обтекаемым воздушным потоком цилиндрическим препятствием возникают вихревые структуры типа дорожки Кармана, которые приводят к возникновению колебаний давления в следе. На расстоянии 2-5 калибров (диаметров), где возникают максимальные колебания, располагают пластину, воспринимающую эти колебания. На этой пластине, в месте максимальной деформации крепится пьезопреобразователь, который преобразует деформацию пластины в электричество. Устройство работает в области 16-40 Гц с максимумом порядка 20 Гц. Во втором решении способ формирования вихрей имеет ту же самую физическую природу. Но для усиления колебаний воспринимающей пластины используются магниты, сохраняющие неустойчивое состояние пластины с прикрепленным пьезопреобразователем.

Наиболее близким по существенным признакам является устройство (патент CN 107707153, H02N 2/18, 2018 г.). Изобретение раскрывает пьезоэлектрическое устройство генерирования электроэнергии на основе турбулентного потока, который обтекает цилиндрическое тело.

В приведенном выше устройстве получения электричества на основе пьезопреобразования с использованием колебаний давления в следе обтекаемого цилиндрического тела основным недостатком является относительная сложность создания определенных условий для формирования потоков, двухступенчатое преобразование энергии от потока к механической и далее к электрической энергии. Для достижения максимальной эффективности используют устройства усиления механической деформации пьезоэлемента, что приводит к существенному усложнению конструкции преобразователя. В частности используют магнитный узел для усиления бистабильного состояния пьезопреобразователя.

Основной недостаток известных решений заключается в узкой полосе частот сбора энергии с дополнительными элементами усиления деформаций для преобразования колебаний давления в вихревом следе в механическую энергию, низкой эффективности электромеханических преобразований пьзоэлектрических устройств.

Задачей изобретения является создание нового эффективного способа преобразования низкопотенциального тепла напрямую в электричество.

Поставленная задача решается тем, что в способе получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, при котором при обтекании нагретого тела потоками газа или жидкости за ним образуется вихревой след, в который помещают электрогенератор для получения электрической энергии, согласно изобретению, в вихревой след помещают пироэлектрический генератор для прямого преобразования тепловых пульсаций в электрическую энергию, в качестве обтекаемых нагретых тел используют препятствия различной конфигурации, а поверхность обтекаемого тела нагревается за счет проходящего в нем технологического потока жидкости или газа.

Поверхность обтекания нагревается, и в следе возникают колебания температуры, которые напрямую преобразуются в электричество посредством пироэлектрического эффекта в пиро-(пьезо)материалах. Пироэлектрический преобразователь (пирогенератор) в следе обтекаемого тела устанавливается неподвижно, поэтому механические колебания отсутствуют, и не требуется согласования механических частот пластины преобразователя и частоты воздействия вихрей. В предлагаемом изобретении пирогенератор работает во всем диапазоне возникновения вихревых структур (колебаний температур).

На фиг. 1 представлен вид устройства для осуществления способа получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, где:

1 - нагретое тело;

2 - пироэлектрический генератор;

3 - крепление пироэлектрического генератора.

На фиг. 2 показана эквивалентная схема пироэлектрического генератора и измерение напряжения на типовой нагрузке RL.

На фиг. 3 приведена таблица данных эксперимента (через запятую для 5 и 3 пироэлектрических элементов соответственно).

Способ осуществляется следующим образом.

При обтекании нагретого тела 1 потоками газа или жидкости за ними образуются вихревые структуры типа дорожки Кармана. Вихревые структуры (вихри) имеют отличную от внешнего потока температуру. Такие нагретые вихри создают пульсации тепла (температуры) в определенных местах за телом обтекания. Первая вихревая структура формируется за телом на расстоянии примерно 1-1,5 диаметра и здесь будет максимальная с внешним потоком разность температур. В этом месте устанавливается пирогенератор 2, который преобразует тепловую энергию в электрическую. Пирогенератор 2 состоит из нескольких пироэлементов. Количество пироэлементов зависит от их размеров, взаимного расположения и размера обтекаемого тела. При использовании нагретых цилиндрических тел (труб), за ними образуется след, состоящий из двух вихревых дорожек, в которые помещаются 2 пиролектрических генератора.

Промышленная применимость.

Были проведены экспериментальные исследования в аэродинамическом канале. Аэродинамический канал содержит осевой вентилятор, который подает воздух в канал, камеру формирования профиля скорости с хонейкомбом и конфузором, рабочий участок, диффузор и вытяжную систему. Рабочий участок установки, изготовленный из оргстекла, имеет форму прямоугольного параллелепипеда с квадратным поперечным внутренним сечением 0,125×0,125 м2 и длиной 1 м. Управляющий блок позволяет плавно менять вращение вентилятора, обеспечивая поддержание средней скорости ядра потока в рабочем участке в диапазоне 0,5-30 м/с.

В рабочий участок помещалась горизонтально дюралевая трубка с внешним диаметром 31 мм и толщиной стенок 2 мм. Цилиндр обтекался потоком воздуха комнатной температуры при различной скорости. За цилиндром при его обтекании возникают вихревые структуры типа дорожки Кармана, которые асимметрично квазипериодически сходят с верхней и нижней части. Частота схода этих вихрей (без нагрева) определяется из числа Струхаля, величина которого составляет Sh≈0,2 для широкого интервала чисел Рейнольдса Re≈2⋅102-2⋅105. В этом же диапазоне чисел Рейнольдса коэффициент сопротивления цилиндра не меняется и составляет порядка 1. Из скорости потока v, диаметра цилиндра D можно определить частоту схода вихрей с поверхности цилиндра: fSh=(Sh×v)/D=0,18v/D.

Для получения пульсаций температуры в вихревом следе за цилиндром внутрь трубки помещался омический нагреватель, мощность которого можно было менять с помощью ЛАТР. Температура на поверхности тела измерялась термопарой с подветренной стороны потока. Электрическая мощность нагревателя в трубке была постоянной и равна 330 Вт.

В качестве пироэлектрического генератора использовалась кассета из пяти пироэлементов (фиг. 1), каждый из которых представляет собой пластинку, состоящую из бронзовой подложки диаметром 27 мм и толщиной 200 мкм с нанесенной на нее пьезокерамикой ЦТС (цирконат-титанат свинца) диаметром 20 мм и толщиной 220 мкм. Пироэлементы находились на расстоянии 2 мм друг от друга, и были соединены параллельно, имея каждый емкость Ср≈22 нФ, сопротивление Rp≈1 ГОм. Кассета с пироэлектриками устанавливалась на расстоянии 1-1,5D от цилиндра вниз по течению. Дополнительно были проведены измерения с кассетой из 3 пироэлектриков, расстояния между которыми были порядка 5 мм.

Были измерены температуры за цилиндром в следе и в свободном потоке в одном и том же сечении. Разница температур составила 25-35°С в зависимости от диапазона параметров, указанных в таблице (фиг. 3).

Измерения напряжения на нагрузке URL проводились цифровым осциллографом ADS-2061MV с входным сопротивлением RL=1 МОм (фиг. 2). Было получено переменное напряжение со средней амплитудой Ua.

В таблице (фиг. 3) приведены данные эксперимента, через запятую для 5 и 3 пироэлементов соответственно.

Показана возможность получения пироэлектричества в вихревом следе обтекаемого нагретого тела без учета оптимальных режимов и конструкции устройства пирогенератора.

Преимущества предложенного способа:

- прямое преобразование тепловых (температурных) пульсаций в электричество;

- использование коммерческой достаточно дешевой керамики в качестве материала пироэлемента;

- простота конструкции;

- возможность использования пироэлементов в широком диапазоне частот, возможность использования большого количества их одновременно.

Способ позволяет получать электрическую энергию малой мощности из тепловых пульсаций при обтекании нагретых тел различной конфигурации, которые используются в вентиляционной и аэродинамической системах, в системах микроэлектроники для питания различных маломощных датчиков и накопления энергии в аккумуляторах.

Способ получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, при котором при обтекании нагретого тела потоками газа или жидкости за ним образуется вихревой след, в который помещают электрогенератор для получения электрической энергии, отличающийся тем, что в вихревой след помещают пироэлектрический генератор для прямого преобразования тепловых пульсаций в электрическую энергию, в качестве обтекаемых нагретых тел используют препятствия различной конфигурации, а поверхность обтекаемого тела нагревается за счет проходящего в нем технологического потока жидкости или газа.
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСТВА ПРИ ОБТЕКАНИИ НАГРЕТОГО ТЕЛА ЗА СЧЕТ ПИРОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ТЕПЛА В ВИХРЕВОМ СЛЕДЕ
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСТВА ПРИ ОБТЕКАНИИ НАГРЕТОГО ТЕЛА ЗА СЧЕТ ПИРОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ТЕПЛА В ВИХРЕВОМ СЛЕДЕ
Источник поступления информации: Роспатент

Showing 81-90 of 95 items.
10.11.2019
№219.017.e03f

Пусковое горелочное устройство

Изобретение относится к области энергетики. Пусковое горелочное устройство содержит корпус, парогенератор водяного пара, состоящий из установленных соосно и соединенных между собой трубками бачка-испарителя и паросепаратора, выполненных в виде кольцевых камер, пароперегревателя, выполненного в...
Тип: Изобретение
Номер охранного документа: 0002705495
Дата охранного документа: 07.11.2019
19.11.2019
№219.017.e3c4

Способ охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения поверхность электронного компонента орошают потоками микрокапель...
Тип: Изобретение
Номер охранного документа: 0002706325
Дата охранного документа: 15.11.2019
14.12.2019
№219.017.edfd

Способ измерения трехмерной геометрии выпуклых и протяженных объектов

Изобретение относится к бесконтактным методам получения больших объемов информации для создания детальных трехмерных цифровых и графических моделей как отдельных сложнопрофильных изделий, так и трехмерных моделей объемных конструкций на разных этапах их изготовления. Способ бесконтактного...
Тип: Изобретение
Номер охранного документа: 0002708940
Дата охранного документа: 12.12.2019
12.02.2020
№220.018.01a1

Система мониторинга режимов горения топлива путем анализа изображений факела при помощи классификатора на основе свёрточной нейронной сети

Изобретение относится к области теплоэнергетики и может быть использовано для прогнозирования и управления факельным сжиганием топлива, в частности, в топочных устройствах в угольных и газовых котлах. Техническим результатом является повышение эффективности и безопасности сжигания топлива за...
Тип: Изобретение
Номер охранного документа: 0002713850
Дата охранного документа: 07.02.2020
23.02.2020
№220.018.0610

Способ повышения эффективности вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ вакуумной дезинтеграции золотоносных глинистых пород включает импульсное скоростное вакуумирование за время не более 1 секунды с достижением...
Тип: Изобретение
Номер охранного документа: 0002714787
Дата охранного документа: 19.02.2020
28.02.2020
№220.018.06ee

Автоматическая система диагностики процесса сжигания пылеугольного топлива в камере сгорания

Изобретение относится к способам диагностики процесса сжигания пылеугольного топлива. Задачей настоящего изобретения является создание автоматической системы диагностики процесса сжигания пылеугольного топлива в камере сгорания, основанной на использовании сверточных и рекуррентных нейронных...
Тип: Изобретение
Номер охранного документа: 0002715302
Дата охранного документа: 26.02.2020
28.03.2020
№220.018.1181

Способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке

Изобретение относится к энергетике. Способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке включает определение эталонных характеристик процесса горения для данного вида топлива в данной топке, периодическое измерение показаний датчиков в контрольных...
Тип: Изобретение
Номер охранного документа: 0002717868
Дата охранного документа: 26.03.2020
24.06.2020
№220.018.29ae

Способ изготовления оптического фильтра на основе графена

Изобретение относится к области нанотехнологий, а именно к использованию новых материалов, таких, как композиты полимер-графен-золото и полимер-графен-серебро, полученных с использованием метода химического осаждения из паровой фазы (ХОПФ). Предложен способ изготовления оптического фильтра на...
Тип: Изобретение
Номер охранного документа: 0002724229
Дата охранного документа: 22.06.2020
24.06.2020
№220.018.29f6

Способ изготовления нагревателя на основе графена

Изобретение относится к области нанотехнологий, а именно к области использования новых материалов, таких как композиты полимер-графен, полученные методом химического осаждения из паровой фазы (ХОПФ). Способ изготовления нагревателя на основе графена, содержащего прозрачную полимерную подложку с...
Тип: Изобретение
Номер охранного документа: 0002724228
Дата охранного документа: 22.06.2020
24.06.2020
№220.018.2a09

Способ изготовления термоакустического излучателя на основе графена

Изобретение относится к области нанотехнологий. Изобретение относится к области использования новых материалов, таких как композиты полимер-графен, полученных методом химического осаждения из паровой фазы (ХОПФ). Изобретение может найти применение в акустике. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002724227
Дата охранного документа: 22.06.2020
+ добавить свой РИД