×
19.11.2019
219.017.e3c4

СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ ПЛЕНОЧНЫМИ И КАПЕЛЬНЫМИ ПОТОКАМИ ЖИДКОСТИ С ИСПОЛЬЗОВАНИЕМ ОРЕБРЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения поверхность электронного компонента орошают потоками микрокапель жидкости с помощью каплеформирователя, расположенного в верхней стенке канала, поверхность электронного компонента структурируют путем нанесения ребер треугольного сечения, ориентированных вдоль течения, при этом каплеформирователь расположен по всей длине электронного компонента. Истечение микрокапель жидкости осуществляют вдоль вершин ребер с таким расчетом, чтобы капли, попадая на не смоченную поверхность ребер, деформировались, формировали существенную суммарную длину контактных линий газ-жидкость-твердое тело и быстро испарялись. Технический результат - повышение эффективности охлаждения высоконапряженных по тепловым потокам электронных компонентов. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования.

Важной не решенной проблемой является снятие высоких тепловых потоков с различных электронных компонентов. В настоящее время в электронной промышленности плотности тепловых потоков приближаются к величине 1 кВт с 1 квадратного см. Часто плотность теплового потока на электронном компоненте, например, на чипе компьютера, является неоднородной (A. Bar-Cohen, P. Wang, Thermal Management of On-Chip Hot Spot // J. Heat Transfer 134(5), 051017, 2012). На участках более интенсивного тепловыделения жидкостный теплоноситель испаряется быстрее, чем на всем чипе, что может вызывать образование локализованных сухих пятен. Термокапиллярные силы стараются переместить жидкость с более нагретых областей в менее нагретые и усиливают проблему возникновения локального кризиса теплообмена. В случае однородного тепловыделения по поверхности чипа, разрушение и высыхание теплоносителя начинается, как правило, от дальней кромки электронного компонента по течению, что подтверждается многочисленными опытами авторов патента.

В статье (Kabov О.А., Kuznetsov V.V., and Legros J.C., Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment // Proc. of 2nd International Conference on Microchannels and Minichannels, June 17-19, 2004, Rochester, Paper No. ICMM2004-2399, pp. 687-694, 2004) предложено техническое решение, в котором охлаждение электронного компонента основано на движении пленки жидкости под действием вынужденного потока пара (Gatapova E.Ya., Kabov О.А., Slip effect on shear-driven evaporating liquid film in microchannel // Microgravity Science and Technology, XIX-3/4, 2007, pp. 132-134) или газа (Gatapova E.Y., Lyulin Y.V., Marchuk I.V., Kabov O.A. and Legros J-C., The thermocapillary convection in locally heated laminar liquid film flow caused by a co-current gas flow in narrow channel // Proc. First International Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, April 24-25, 2003, Rochester, NY, USA; Gatapova E.Ya., Marchuk I.V., Kabov O.A., Thermocapillary Deformation of a Locally Heated Liquid Film Moving under the Action of a Gas Flow // Technical Physics Letters, Vol. 30, Issue 5, pp. 418-421, 2004).

Одно из технических решений описано в статье (Kabov О.A., Lyulin Yu.V., Marchuk I.V. and Zaitsev D.V., Locally heated shear-driven liquid films in microchannels and minichannels, Int. Journal of Heat and Fluid Flow, Vol. 28, p. 103-112, 2007; Gatapova E.Ya., Kabov O.A., Shear-driven flows of locally heated liquid films // Int. Journal of Heat and Mass Transfer, Vol. 51, issues 19-20, 2008, pp. 4797-4810; Kabov O.A., Gatapova E.Ya., Zaitsev D.V. Cooling Technique Based on Evaporation of Thin and Ultra Thin Liquid Films // IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, ISBN: 978-1-4244-1701-8, ISSN: 1087-9870, pp. 520-527, 2008). В данном способе охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, движущейся под действием вынужденного потока газа в канале.

Наиболее близким по технической сущности заявляемому решению является способ охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков (патент РФ №2649170, F28C 3/06, 2016 г. ). Осушенные области электронного компонента, расположенные в области дальней кромки электронного компонента по течению, дополнительно орошаются потоками микрокапель жидкости с помощью каплеформирователя, расположенного на верхней стенке канала. Отдельные каплеформирователи предлагается также располагать над областями электронного компонента с максимальной плотностью теплового потока, причем истечение микрокапель жидкости осуществляется против направления течения газа под углом от 10 до 80 градусов к направлению течения газа.

Недостатком этих технических решений является относительно малые величины критического теплового потока, которые можно иметь в данной системе охлаждения при небольших расходах жидкости и газа. Данный факт объясняется тем, что охлаждение электронного компонента происходит за счет испарения жидкости, которая движется вдоль канала под действием потока газа. Таким образом, чтобы отвести определенное количество тепла, постоянно выделяющегося на электронном компоненте, необходимо испарить определенное количество жидкости. Наиболее оптимальной системой охлаждения является система, в которой G/Gevap=1, где G - массовый расход жидкости на входе в канал, кг/с, Gevap - массовый расход испаряющейся жидкости, кг/с.На практике данное отношение может существенно превышать 1, т.к. на пленку жидкости действуют различные силы - инерции, поверхностные, термокапиллярные и др., которые приводят к волнообразованию и неоднородному распределению пленки жидкости по поперечному сечению канала (смотрите, например, Chinnov Е.A., Ron'shin F.V., Kabov О.A. Two-Phase Flow Patterns in Short Horizontal Rectangular Microchannels, International Journal of Multiphase Flow, Vol. 80, pp. 57-68, 2016.). Недостатком этих технических решений является также то, что поверхность охлаждаемого электронного компонента является гладкой и не способствует оптимизации и интенсификации процесса.

Задачей заявляемого изобретения является повышение эффективности охлаждения высоконапряженных по тепловым потокам электронных компонентов за счет использования пленочных и капельных потоков жидкости, а также структурирования поверхности охлаждения.

Поставленная задача решается тем, что в способе охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения, основанном на движении тонкой пленки жидкости за счет потока газа в канале, при котором поверхность электронного компонента орошают потоками микрокапель жидкости с помощью каплеформирователя, расположенного в верхней стенке канала, согласно изобретению, поверхность электронного компонента структурируют путем нанесения ребер треугольного сечения, ориентированных вдоль течения, при этом каплеформирователь расположен по всей длине электронного компонента. Ребра орошаются потоком микрокапель жидкости по всей длине электронного компонента с помощью каплеформирователя, расположенного на верхней стенке канала, причем истечение микрокапель жидкости осуществляют вдоль вершин ребер с таким расчетом, чтобы капли попадая на не смоченную поверхность ребер деформировались, формировали существенную суммарную длину контактных линий газ-жидкость-твердое тело и быстро испарялись.

Поступающие микрокапли жидкости обеспечивают высокую интенсивность теплообмена, препятствуют полному осушению поверхности электронного компонента по всей его длине, увеличивают критический тепловой поток и в целом увеличивают эффективность охлаждения высоконапряженных по тепловым потокам электронных компонент. Высокая эффективность охлаждения достигается за счет разделения ребрами пленки жидкости на отдельные ручейки, которые по всей длине подпитываются микрокаплями, что препятствует формированию существенного волнообразования и неоднородному распределению пленки жидкости по поперечному сечению канала, а главное за счет формирования протяженных динамических контактных линий газ-жидкость-твердое тело в которых осуществляется наиболее интенсивное испарение (см. работу авторов Ajaev, V.S., & Kabov, О.A. Heat and mass transfer near contact lines on heated surfaces. International Journal of Heat and Mass Transfer, 2017, 108, 918-932. DOI: 10.1016/j.ijheatmasstransfer.2016.11.079).

Необходимо отметить, что орошаемые ребра структурируют хладогент на электронном компоненте и делают температуру на электронном компоненте более однородной, что является важным в целом ряде конкретных приложений. За счет комбинации трех видов охлаждения: газ; пленка жидкости; микрокапли жидкости в предложенной системе достигается высокая надежность и одновременно экономия энергоресурсов - электрической мощности на прокачку теплоносителей. Такая система может приближаться к оптимальной с точки зрения соотношения G/Gevap=1.

На фиг. 1 показана система охлаждения электронного оборудования, где:

1 - вход газа в канал;

2 - вход жидкости в канал;

3 - испаряющаяся пленка жидкости;

4 - подложка;

5 - электронный компонент;

6 - каплеформирователь;

7 - ребра

8 - резервуар для газа;

9 - конденсатор-сепаратор;

10 - система охлаждения конденсатора;

11 - резервуар для жидкости;

12 - микрокапля жидкости;

13 - ручеек жидкости;

14 - линия контакта газ-жидкость-твердое тело.

На фиг. 2 показана структурированная поверхность электронного компонента.

Способ осуществляется следующим образом.

Поверхность электронного компонента (5) структурируется путем нанесения ребер (7) треугольного сечения, ориентированных вдоль течения. В случае незначительного тепловыделения на электронном компоненте (чипе) (5) в канал подается только газ (1). Если тепловая нагрузка возрастает, то в канал подается дополнительно жидкость (2), формируется пленка жидкости (3), которая на чипе разделяется на отдельные ручейки (13). С ростом тепловой нагрузки максимально увеличиваются расходы жидкости и газа (до ~1 г/с и 1 л/с, соответственно). В случае еще большего повышения тепловыделения на электронном компоненте (5), жидкость дополнительно подается в каплеформирователь (6), который расположен по всей длине чипа. Истечение микрокапель жидкости (12) осуществляется против направления течения газа, с таким расчетом, чтобы капли преодолели движущийся поток газа и достигли поверхности ребер (7). При движении ручейков жидкости (13) вдоль электронного компонента и капель жидкости (12) вдоль ребер (7) формируется протяженная динамическая линия контакта газ-жидкость-твердое тело в которой осуществляется наиболее интенсивное испарение. Неиспарившаяся жидкость вместе с паро-газовой смесью из канала поступают в конденсатор-сепаратор (9), где происходит конденсация пара и сепарация газа. Из конденсатора-сепаратора (9) жидкость поступает в резервуар для жидкости (11), а газ поступает в резервуар для газа (8). Для поддержания необходимой температуры конденсатора, используется система охлаждения конденсатора (10).

Данная система охлаждения может работать в условиях микрогравитации, гипергравитации и переменной гравитации, а кроме того на транспортных средствах -автомобили, скоростные поезда, морские суда, самолеты, обитаемые и необитаемые космические аппараты, и станции.

Способ охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения, основанный на движении тонкой пленки жидкости за счет потока газа в канале, при котором поверхность электронного компонента орошают потоками микрокапель жидкости с помощью каплеформирователя, расположенного в верхней стенке канала, отличающийся тем, что поверхность электронного компонента структурируют путем нанесения ребер треугольного сечения, ориентированных вдоль течения, при этом каплеформирователь расположен по всей длине электронного компонента.
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ ПЛЕНОЧНЫМИ И КАПЕЛЬНЫМИ ПОТОКАМИ ЖИДКОСТИ С ИСПОЛЬЗОВАНИЕМ ОРЕБРЕНИЯ
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ ПЛЕНОЧНЫМИ И КАПЕЛЬНЫМИ ПОТОКАМИ ЖИДКОСТИ С ИСПОЛЬЗОВАНИЕМ ОРЕБРЕНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 95 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
Showing 1-10 of 15 items.
20.02.2015
№216.013.2a2c

Способ интенсификации теплообмена при кипении на гладкой поверхности

Изобретение относится к способам интенсификации теплообмена жидкости с гладкой поверхностью и может быть использовано при изготовлении систем охлаждения гладкой поверхности, в частности, при изготовлении систем охлаждения микроэлектронного оборудования. На гладкой охлаждаемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002542253
Дата охранного документа: 20.02.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
12.01.2017
№217.015.629a

Устройство для формирования ручейкового течения жидкости в микро- и мини-каналах (варианты)

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве для формирования...
Тип: Изобретение
Номер охранного документа: 0002588917
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.b75b

Конденсатор-сепаратор для двухкомпонентных двухфазных систем

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002614897
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.cec6

Устройство формирования пристенных капельных течений жидкости в микро- и мини-каналах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский...
Тип: Изобретение
Номер охранного документа: 0002620732
Дата охранного документа: 29.05.2017
29.12.2017
№217.015.f429

Интенсифицирующая теплообменная поверхность для удлинения динамического мениска

Изобретение относится к области электроники, в частности к испарительным системам охлаждения электронного и микроэлектронного оборудования, таким, как микроканальные теплообменники и тепловые трубы, которые обеспечивают высокие значения коэффициента теплопередачи в высоконапряженных по тепловым...
Тип: Изобретение
Номер охранного документа: 0002637802
Дата охранного документа: 07.12.2017
19.01.2018
№218.015.ffbe

Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники. Изобретение заключается в том, что в канале, на одной из сторон, которая является поверхностью подложки тепловыделяющего элемента, выполнены продольные...
Тип: Изобретение
Номер охранного документа: 0002629516
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.1728

Эффективный конденсатор пара для условий микрогравитации

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применятся в устройствах для охлаждения электроники. В конденсаторе пара, содержащем канал для протока пара, образованный поверхностью конденсации, поверхность конденсации имеет...
Тип: Изобретение
Номер охранного документа: 0002635720
Дата охранного документа: 15.11.2017
+ добавить свой РИД