×
06.10.2019
219.017.d331

Результат интеллектуальной деятельности: Способ повышения эффективности очистки кремния

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии очистки кремния, в частности к получению кремния, используемого для производства фотоэлектрических преобразователей, и может быть использовано для повышения скорости прямой очистки кремния. Сущность изобретения заключается в использовании реверсного магнитогидродинамического (МГД) перемешивания расплава, в ходе которого циклически изменяют направление перемешивания с интервалом времени, соответствующим времени переходного процесса перехода к квазиустановившемуся режиму с установившимся распределением скоростей перемешивания внутри расплава. Техническим результатом является повышение эффективности очистки кремния за счет увеличения интенсивности массообмена внутри жидкой фазы, обеспечиваемой реверсным режимом МГД-перемешивания, при котором достигается сложный турбулентный характер движения расплава. 7 ил.

Изобретение относится к технологии очистки кремния с помощью методов вакуумного рафинирования, плазмотермической и плазмохимической очистки и метода направленной кристаллизации, в частности для получения кремния, используемого для производства фотоэлектрических преобразователей, и может быть использовано для повышения скорости прямой очистки металлургического кремния и снижения конечной стоимости производства без использования экологически опасных технологических операций.

В настоящее время широко распространен способ очистки, основанный на преобразовании металлургического кремния в летучие соединения (силаны), и последующее восстановление кремния в специализированных реакторах (Siemens-процесс, процесс Union Carbide). Данные методы являются экологически опасными по причине образования в ходе производственного процесса значительного количества хлорсиланов. По этой причине в настоящее время получили развитие способы прямой очистки металлургического кремния [1].

Прямая очистка кремния, включает последовательность различных методов, каждая из которых направлена на удаление той или иной группы примесей или конкретной примеси. К таким операциям относятся направленная кристаллизация, вакуумное рафинирование, плазмотермическая и плазмохимическая обработка расплава и т.д. [1]. Метод вакуумного рафинирования обеспечивает удаление из расплава кремния примесей с высоким давлением насыщенных паров (фосфор, натрий, калий, магний, цинк, кальций, алюминий, а также примеси кислорода, удаляющейся в форме моноокиси кремния). Метод плазмотермической очистки является модификацией метода вакуумного рафинирования, основанной на воздействии на поверхность расплава высокотемпературных потоков плазмы. Поток плазмы создает на поверхности расплава кремния локальную область с высокой температурой, с поверхности которой происходит интенсивное испарение примесей с высоким давлением насыщенных паров. Данным методом обеспечивается существенное повышение скорости очистки от примесей с низкой интенсивностью испарения (алюминий, кальций, медь и т.д.). Метод плазмохимической очистки основан на воздействии на поверхность расплава Потока плазмы содержащем химически активные примеси, обеспечивающие перевод примеси бора содержащейся в кремнии в легкоиспаряющиеся соединения. Метод направленной кристаллизации заключается в медленном и управляемом охлаждении расплава с одной стороны расплава (преимущественно снизу) при котором происходит направленное формирование кристаллической фазы, фронт кристаллизации которой перемещается снизу вверх. При этом на границе «расплав-твердое тело» происходит эффективная сегрегация примесей, которые поступают преимущественно в жидкую фазу.

Актуальной является задача повышения скорости удаления примесей из кремния и повышения производительности процессов прямой очистки кремния.

Общим в перечисленных методах прямой очистки кремния является то, что удаление примесей происходит на границе раздела фаз. При этом основным фактором, лимитирующим скорость очистки, является транспорт примесей внутри жидкой фазы к поверхности раздела фаз.

Повышение эффективности очистки обеспечивается путем интенсификации массообмена расплава кремния с поверхностью путем перемешивания. Базовыми способами перемешивания являются механическое перемешивание, барботирование, магнитогидродинамическое перемешивание. По отношению к расплаву кремнию преимущественно применяются барботирование и магнитогидродинамическое перемешивание. Магнитогидродинамическое перемешивание (МГД-перемешивание) обеспечивает возможность управляемого бесконтактного перемешивания больших масс кремния, что обеспечивает ему преимущество по сравнению с методом барботирования.

Существует способ очистки металлургического кремния [1, 2], в котором очистка осуществляется методом плазмохимической очистки в условиях интенсивного МГД-перемешивания индуцируемого ВЧ-индуктором, одновременно используемым для нагрева кремния. Распределение скорости перемешивания, обеспечиваемое единичным ВЧ-индуктором внутри которого помещается расплав кремния имеет форму двух тороидов, расположенных один под другим. При этом направление тороидального вращения верхнего и нижнего тора противоположно. Такая форма перемешивания определяется распределением силы Лоренца, максимум которой приходится на середину тигля по высоте. Недостатком указанного метода является то, что нижняя половина расплава фактически не имеет эффективного массообмена с поверхностью, что снижает эффективность очистки.

Существует способ очистки кремния, в котором расплав кремния располагается только в нижней части индуктора (ниже средины) [3]. При этом обеспечивается такое распределение силы Лоренца в расплаве, что форма поля скоростей принимает форму единичного тора. Направление вращения в данной геометрии всегда неизменно: расплав движется вниз вдоль осевой линии индуктора. Это обусловлено тем, что вращение в данной геометрии обеспечивается за счет неоднородности поля вдоль оси индуктора. Недостатками данного подхода являются, во-первых, невозможность изменения направления вращения, во-вторых низкая эффективность использования энергии электромагнитного поля, в третьих сложность конструктивной реализации и масштабирования, поскольку высота индуктора должна быть минимум в два раза выше высоты тигля.

Данный способ МГД-перемешивания используется и для улучшения качества слитков кремния и рафинирования кремния с использованием метода направленной кристаллизации [4, 5], что обеспечивает снижение концентрации металлических примесей.

Существует способ направленной кристаллизации и улучшения качества слитков кремния в условиях МГД перемешивания бегущим магнитным полем индуцируемым системой трех и более индукторов [6, 7]. Бегущее магнитное поле обеспечивается сдвигом фаз тока в индукторах друг относительно друга. Форма поля скоростей движения расплава кремния имеет форму единичного тора. При этом направление вращения определяется взаимным сдвигом фаз тока в системе индукторов. МГД-перемешивание расплава с использованием бегущего магнитного поля имеет ряд преимуществ. Во-первых, обеспечивается высокая эффективность использования энергии магнитного поля для перемешивания, расплава кремния, во-вторых обеспечивается возможность управления направлением вращения. Бегущее магнитное поле, формируемое системой индукторов широко используется в металлургии при улучшении качества литья [8, 9].

Для методов вакуумного рафинирования, плазмотермической и плазмохимической очистки в условиях МГД-перемешивания удаление примесей из объема расплава кремния происходит на границе раздела фаз «жидкий кремний - газовая фаза (вакуум)». При этом очищается приповерхностный слой жидкого кремния. Для метода направленной кристаллизации в условиях МГД-перемещивания снижение концентрации примесей в растущем кристалле кремния происходит за счет уменьшения концентрации примесей в диффузном слое на границе раздела фаз «кристаллический кремний - жидкий кремний». Общим для указанных способов рафинирования в условиях МГД-перемешивания является транспорт примесей в жидкой фазе к границе раздела фаз. Математическое моделирование процесса очистки показывает, что поскольку поле скоростей имеет форму тора, то слой кремния, обедненный (для вакуумного рафинирования, плазмотермической и плазмохимической очистки), или обогащенный (для направленной кристаллизации) примесями, совершив один оборот по направлению вращения тора, возвращается обратно к той же границе раздела фаз, где произошло обогащение/обеднение. В качестве примера на фиг. 1 представлены результаты математического, моделирования процесса вакуумного рафинирования расплава кремния. Для аксиально-симметричной модели представлены распределения концентрации примеси фосфора в объеме кремния в различные моменты времени, фиг. 1: а - 30 с, б - 100 с, в - 25000 с.

Из фиг. 1 видно, что в процессе очистки в условиях МГД-перемешивания образуется неактивная область внутри тора вращения транспорт примесей из которой на поверхность раздела фаз затруднен и определяется во многом диффузионной составляющей потока. Таким образом, фактор образования неактивной зоны внутри расплава существенно ограничивает интенсивность очистки. Для других способов очистки кремния данная закономерность также справедлива.

Наиболее близким аналогом является способ, описанный в патенте [9]. В патенте предложено устройство и способ направленной кристаллизации кремния в условиях МГД-перемешивания расплава кремния в котором расплав кремния находится в непроводящем тигле, расположенном внутри индукторов, являющихся одновременно и резистивными нагревателями. С помощью сдвига фаз тока в индукторах создается бегущее магнитное поле, обеспечивающее перемешивание расплава кремния. Согласно патенту, кристаллизация осуществляется в условиях МГД-перемешивания, что приводит к улучшению качества получаемых слитков в основном за счет уменьшения концентрации примесей эффективно сегрегирующихся в ходе очистки методом направленной кристаллизации. Способ предполагает только одно направление перемешивания, что снижает эффективность очистки данным методом.

При создании заявляемого изобретения решается задача повышения скорости очистки кремния за счет использовании реверсного МГД-перемешивания.

Сущность изобретения заключается в использовании реверсного МГД-перемешивания расплава, в ходе которого циклически изменяется направление перемешивания с интервалом времени реверса Δt, определяемым временем τ переходного процесса перехода от установившегося режима одного направления перемешивания к установившемуся режиму противоположного направления перемешивания с неизменяющимся распределением скоростей перемешивания внутри расплава. Механизмом изменения направления вращения является смена направления волны бегущего магнитного поля путем одновременного переключения сдвига фаз в МГД-индукторах. Особенностью процесса является взаимосвязь между максимальной скоростью перемешивания расплава и интервалом времени реверса - временем, через которое происходит переключение направления перемешивания.

Результаты математического моделирования процесса очистки в условиях реверсного перемешивания показаны на фиг. 2 и фиг 3. Для аксиально-симметричной модели представлены распределения скорости движения расплава и концентрации примеси фосфора в объеме кремния в различные моменты времени, фиг. 2: а - 1200 с, б - 1300 с, в - 1400 с, фиг. 3 а - 2400 с, б - 2500 с, в - 2600 с.

На фиг. 2 представлена динамика изменения концентрации внутри расплава соответствующая изменению первой смене направления перемешивания расплава. Видно, что при смене направления вращения происходит взаимодействие движущейся по инерции массы расплава кремния с изменившимся объемным распределением силы Лоренца в результате которого происходит сложное движение спиралеобразной формы (фиг. 2 б). В результате этого происходит вытеснение внутреннего неактивного объема тора содержащего максимальное количество примесей к поверхности расплава, где происходит их очистка (фиг. 2 в). Последующая смена направления вращения (фиг. 3) приводит к аналогичному эффекту.

Таким образом, полученные картины распределения показывают, что через некоторое время после изменения направления перемешивания внутри расплава кремния происходит перенос объема кремния из сердцевины тора вращения к его краю. За счет этого, обеспечивается эффективный транспорт примесей к поверхности из глубины расплава. На фиг. 4 представлены результаты расчета изменения средней концентрации примеси фосфора в объеме фосфора во времени при вакуумном рафинировании в режиме стационарного и нестационарного МГД-перемешивания.

Фиг. 4 показывает, что при стационарном перемешивании интенсивность очистки непрерывно замедляется. При нестационарном МГД-перемешивании скорость очистки уменьшается к концу цикла и снова возрастает после смены направления вращения. Таким образом обеспечивается значительно большая интенсивность очистки.

На фиг. 5 представлены зависимости средней концентрации примесей в расплаве кремния от времени при различных режимах нестационарного перемешивания с разным временем реверса. Видно, что использование нестационарного МГД-перемешивания способно обеспечить на 2-3 порядка большую глубину очистки по сравнению с стационарным режимом или сокращение времени процесса в 2-3 раза.

Режим реверсного МГД-перемешивания можно обеспечить периодической сменой направления бегущего магнитного поля. Механизмом практической реализации может являться одновременное переключение сдвига фаз в МГД-индукторах. На фиг. 6 схематично показан пример реализации процесса реверсного МГД-перемешивания для системы из трех индукторов: I, III - стадии квазиустановившегося режима перемешивания имеющие различное направление вращения; II, III. На фиг. 6 позицией 1 обозначен кварцевый тигель, позицией 2 - расплав кремния. Исходной является стадия квазиустановившегося состояния I в которой волна бегущего магнитного поля формируемого системой кольцевых индукторов L1-L2-L3 направлена сверху вниз, что соответствует тороидальному движению расплава вверх по центральной оси. При этом ток в индукторах L1-L2-L3 сдвинут на некоторый угол друг относительно друга на некоторый угол ϕ, что при синусоидальной форме токов в индукторах описывается выражениями:

Далее изменяя взаимное расположение фаз в индукторах L1 и L3 изменяется направление бегущего магнитного поля на противоположное. Форма тока в индукторах при этом соответствует выражениям:

Изменение направления волны бегущего магнитного поля приводит к переходу к описанному выше нестационарному режиму II перемешивания в котором движение расплава имеет сложную форму. Через некоторый промежуток времени направление вращения полностью изменяется на противоположное, что соответствует квазистационарному режиму III. После этого снова изменяется направление бегущего магнитного поля путем изменения взаимного расположения фаз в индукторах L1 и L3. Это приводит к следующему переходному процессу IV соответствующего сложной форме движения расплава кремния. Далее через некоторый промежуток времени направление движения соответствует исходной стадии квазиустановившегося режима I. Процесс реверсного МГД-перемешивания циклически повторяется, что обеспечивает эффективное перемешивание расплава.

Длительность времени перехода τ от одной стадии перемешивания с установившимся распределением скоростей к другой стадии с установившимся распределением скоростей направления зависит от силы Лоренца, которая определяется силой тока в индукторах. Моделирование показывает, что с увеличением силы тока в индукторах увеличивается сила Лоренца и время перехода к установившемуся режиму τ уменьшается. Пример зависимости времени перехода к установившемуся режиму от силы тока в индукторах (по относительному значению) представлен на фиг. 7.

Установлено, что для обеспечения высокой эффективности очистки интервал времени реверса Δt, используемый в ходе реверсного МГД-перемешивания должен определяться временем перехода к установившемуся режиму τ по выражению:

0.35τ≤Δt≤2τ.

Эффективность рафинирования в предлагаемом способе зависит как от величины скоростей движения расплава кремния в условиях МГД-перемешивания, так и от интервала времени реверса Δt, оптимальное значение которого определяется скоростью МГД-перемешивания.

Таким образом, предлагаемое решение по использованию реверсного МГД-перемешивания расплава, в ходе которого циклически изменяется направление перемешивания с интервалом времени, соответствующим времени переходного процесса перехода к квазиустановившемуся режиму приводит к возникновению сложной турбулентой формы движения расплава в ходе всего процесса рафинирования и существенному повышению интенсивности массообмена внутри жидкой фазы. При этом обеспечивается возможность обработки больших объемов кремния. Данное решение может быть использовано в технологии прямой очистки кремния от примесей с целью получения кремния для задач солнечной энергетики, а также для улучшения качества слитков мультикристаллического кремния, получаемых методом направленной кристаллизации.

ЛИТЕРАТУРА

1. Bruno Ceccaroli, Eivind Ovrelid, Sergio Pizzini. Solar Silicon Processes: Technologies, Challenges, and Opportunities 1st Edition. CRC Press, 2016, 272 p.

2. Altenberend, J., Chichignoud, G. & Delannoy, Y. Study of Mass Transfer in Gas Blowing Processes for Silicon Purification. Metallurgical and Materials Transactions E (2017) 4:41

3. Yvon, Alexis & Fourmond, Erwann & Ndzogha, С & Delannoy, Yves & Trassy, Christian. (2003). Inductive Plasma Process For Refining Of Solar Grade Silicon. 125-130. Conference: Proceedings of EPM 2003 4th International Conference on Electromagnetic Processing of Materials.

4. Jafar Safarian, Buhle Xakalashe and Merete Tangstad. VACUUM REMOVAL OF THE IMPURITIES FROM DIFFERENT SILICON MELTS. 26th European Photovoltaic Solar energy conference and exhibition, September 2011, pp.1810-1813.

5. Li, Pengting & Ren, Shiqiang & Jiang, Dachuan & Li, Jiayan & Zhang, Lei & Tan, Yi. (2015). Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification. Journal of Crystal Growth. 437.

6. Kudla, Ch & Blumenau, A.T. & , F & Dropka, Natasha & Frank-Rotsch, Christiane & Kiessling, Frank & Klein, О & Lange, P & Miller, W & Rehse, U & Sahr, U & Schellhorn, M & Weidemann, Gerd & Ziem, M & Bethin, G & Fornari, Roberto & , M & Sprekels, J & Trautmann, V & Rudolph, P. (2013). Crystallization of 640 kg mc-silicon ingots under traveling magnetic field by using a heater-magnet module. Journal of Crystal Growth. 365. 54-58.

7. Патент Германии №102009045680

8. Патент США №7972556 (B2)

9. Патент США №8101119 (В2)

10. Патент Германии №102010028173 (В4), МПК С30В 11/003, Forschungsverbund Berlin eV., 2010

Способ очистки кремния, включающий магнитогидродинамическое перемешивание расплава кремния в процессе очистки с помощью бегущего магнитного поля, формируемого системой индукторов, отличающийся тем, что направление магнитогидродинамического перемешивания циклически изменяют с интервалом времени реверса  Δt, определяемым временем  τ  процесса перехода от установившегося режима одного направления перемешивания к установившемуся режиму противоположного направления перемешивания, при этом величину интервала времени реверса  Δt  выбирают из условия обеспечения  возникновения сложной турбулентой формы движения расплава в ходе процесса очистки для  повышения интенсивности массообмена внутри жидкой фазы, определяемого выражением 0,35τ ≤ Δt ≤ 2τ.
Способ повышения эффективности очистки кремния
Способ повышения эффективности очистки кремния
Способ повышения эффективности очистки кремния
Способ повышения эффективности очистки кремния
Способ повышения эффективности очистки кремния
Способ повышения эффективности очистки кремния
Источник поступления информации: Роспатент

Showing 41-50 of 88 items.
09.06.2018
№218.016.5d5f

Способ повышения разрешающей способности изображений в многоканальных ртлс

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров со сканирующими антеннами. Достигаемый технический результат - повышение пространственного разрешения изображений в...
Тип: Изобретение
Номер охранного документа: 0002656355
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.6049

Способ увеличения скорости электрического ветра

Способ увеличения скорости электрического ветра и устройство для его осуществления относятся к области создания газовых потоков и могут быть использованы в системах продувки, вентиляции, очистки воздуха от пылевых, бактериальных и химических загрязнений в производственных помещениях, а также...
Тип: Изобретение
Номер охранного документа: 0002656970
Дата охранного документа: 07.06.2018
25.06.2018
№218.016.65a1

Способ измерения расстояния до контролируемой среды с помощью волноводного лчм локатора

Изобретение относится к технике промышленных уровнемеров, использующих принцип излучения в волновод частотно-модулированного по симметричному треугольному закону сигнала, получение сигнала разностной частоты путем смешивания отраженного и излучаемого сигналов. Обработка сигнала разностной...
Тип: Изобретение
Номер охранного документа: 0002658558
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.65f6

Фильтр компенсации помех

Изобретение относится к радиолокационной технике и может быть использовано для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся...
Тип: Изобретение
Номер охранного документа: 0002658651
Дата охранного документа: 22.06.2018
06.07.2018
№218.016.6cce

Матричная ракетная двигательная система с индивидуальным цифровым управлением величиной тяги каждой двигательной ячейки для малоразмерных космических аппаратов

Изобретение относится к двигательным системам для малоразмерных космических аппаратов (МКА). Монолитная термостойкая диэлектрическая подложка содержит упорядоченно размещенные на поверхности конусообразные микропоры, заполненные твердым топливом. На центры оснований конусообразных микропор...
Тип: Изобретение
Номер охранного документа: 0002660210
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6d6a

Адаптивный режекторный фильтр

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами. Адаптивный режекторный фильтр содержит измеритель доплеровской фазы...
Тип: Изобретение
Номер охранного документа: 0002660645
Дата охранного документа: 06.07.2018
12.07.2018
№218.016.706a

Фильтр режекции помех

Изобретение относится к радиолокационной технике и может быть использовано для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат - повышение эффективности выделения сигналов движущихся целей на...
Тип: Изобретение
Номер охранного документа: 0002660803
Дата охранного документа: 10.07.2018
19.07.2018
№218.016.72a0

Пирофосфатно-аммонийный электролит контактного серебрения

Изобретение относится к области нанесения серебряных покрытий на медь и ее сплавы и может быть использовано в технологии электронных приборов, радиотехнической промышленности для нанесения декоративных покрытий, для серебрения волноводов и изделий сложной конфигурации, в качестве электролита...
Тип: Изобретение
Номер охранного документа: 0002661644
Дата охранного документа: 18.07.2018
24.07.2018
№218.016.73da

Фильтр режекции пассивных помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002661914
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.73f5

Способ выделения спектральных отсчетов в многоканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации и предназначенным для наблюдения за наземными или воздушными объектами. Достигаемый технический результат - выделение...
Тип: Изобретение
Номер охранного документа: 0002661913
Дата охранного документа: 23.07.2018
Showing 21-23 of 23 items.
02.10.2019
№219.017.ccb5

Многослойное коррозионностойкое покрытие на основе бинарного сплава тугоплавкого металла ni-w

Изобретение относится к области защитных металлических покрытий, например, для защиты изделий из стали, меди и ее сплавов от коррозии, и может быть использовано для улучшения эксплуатационных и потребительских свойств изделий. Многослойное коррозионностойкое покрытие на основе бинарного сплава...
Тип: Изобретение
Номер охранного документа: 0002701607
Дата охранного документа: 30.09.2019
24.11.2019
№219.017.e5d4

Способ очистки металлургического кремния от углерода

Изобретение относится к металлургии и может быть использовано для прямой очистки металлургического кремния от углерода без использования экологически опасных технологических операций до степени чистоты солнечного кремния, используемого в фотоэлектрических преобразователях солнечной энергии в...
Тип: Изобретение
Номер охранного документа: 0002707053
Дата охранного документа: 21.11.2019
19.03.2020
№220.018.0dd8

Устройство и способ формирования пучков многозарядных ионов

Изобретение относится к области ускорительной техники и может быть использовано для формирования пучков (потоков) низкоэнергетических двух- и трехзарядных ионов щелочноземельных и редкоземельных металлов в установках для ионной имплантации и литографии, микрозондового анализа, в ионно-лучевых...
Тип: Изобретение
Номер охранного документа: 0002716825
Дата охранного документа: 17.03.2020
+ добавить свой РИД