×
09.06.2018
218.016.5d5f

СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров со сканирующими антеннами. Достигаемый технический результат - повышение пространственного разрешения изображений в матрицах радиотеплового изображения (РТИ) в равной степени для всех каналов с сохранением температурных характеристик частотных диапазонов. Многоканальная РТЛС с несколькими совмещенными антеннами, имеющими разные характеристики диаграмм направленности (ДН), принимает сигналы в разных частотных диапазонах. Антенны сканируют зону обзора, смещаясь по азимуту и углу места. В результате сканирования и первичной обработки принимаемых сигналов в нескольких измерительных каналах (по числу антенн) формируются матрицы РТИ. Положительный эффект достигается за счет умножения матриц РТИ на определенные коэффициенты и последующей совместной обработки матриц с помощью операций восстановления изображений.
Реферат Свернуть Развернуть

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров [1, 2] со сканирующими антеннами.

Многоканальная РТЛС с несколькими совмещенными антеннами, имеющими разные характеристики диаграмм направленности (ДН), принимает сигналы в разных частотных диапазонах. В результате сканирования антенн зоны обзора и прохождения принимаемых сигналов через тракты первичной обработки в нескольких измерительных каналах формируются матрицы радиотеплового изображения (РТИ) контролируемого участка местности или воздушной обстановки. Каждая матрица соответствует определенной антенне. Изображения объектов в матрицах РТИ получаются нечеткими в силу ограниченной разрешающей способности антенн, определяемой шириной ДН. Амплитуды элементов матриц РТИ несут информацию о радио-яркостной температуре объектов на изображении, которая зависит от частотного диапазона. Из-за различия частотных диапазонов амплитуды соответствующих элементов матриц отличаются. Возникает необходимость повысить четкость изображения объектов (то есть разрешение) за счет дополнительной обработки матриц РТИ и при этом сохранить информацию о тепловых характеристиках объектов в частотных диапазонах.

Известны способы формирования РТИ и повышения их пространственным разрешения, основанные на использовании нескольких совмещенных антенн с разными характеристиками ДН [3, 4]. В этих способах в результате сканирования антенн по пространству формируются несколько матриц РТИ в каналах первичной обработки. Затем эти матрицы совместно обрабатываются и получается одна матрица изображения контролируемого участка местности или воздушной обстановки с повышенным пространственным разрешением. Разрешение изображения повышается за счет увеличения числа каналов с разными характеристиками ДН и операций восстановления при совместной обработке матриц РТИ.

Однако при этом не учитывается различие температурных характеристик объектов в разных частотных диапазонах. Это приводит к ошибкам восстановления изображения, то есть к снижению разрешающей способности. При этом не сохраняются тепловые характеристики объектов в частотных диапазонах, соответствующих различным антеннам.

Рассмотрим в качестве прототипа способ формирования изображений в многоканальных РТЛС и РЛС [3], который заключается в следующем:

1. Антенная система, представляющая собой несколько совмещенных антенн или антенную решетку, построчно сканирует зону обзора, смещаясь по азимуту и углу места.

2. Цифровая система обработки принимаемых сигналов измеряет в каждом q-м канале (q=1, 2, …, Q, Q - число каналов) независимо сигналы в дискретные моменты времени, совпадающие с шагами дискретизации по углу места и азимуту, и формирует из них матрицы РТИ Y1, Y2, …, YQ.

3. Полученные матрицы Y1, Y2, …, YQ последовательно и построчно сворачивают в один вектор измерений .

4. Вектор умножают справа на матрицу весовых коэффициентов Н, вычисляемую заранее, тем самым получают вектор оценок .

5. Вектор оценок разворачивают построчно в матрицу X, представляющую восстановленное изображение зоны обзора с повышенным в несколько раз разрешением по угловым координатам.

Данный способ обладает указанными выше недостатками, а именно:

1. При формировании вектора измерений не учитываются амплитудные различия искомых изображений X1, X2, …, XQ в разных частотных диапазонах антенн. Приближенно принимается: Х12=…=XQ=X, что приводит к ошибкам восстановления.

2. В элементах полученной матрицы X отсутствует информация о тепловых характеристиках объектов в разных частотных диапазонах.

Технический результат направлен на устранение указанных недостатков, а именно на повышение разрешающей способности изображений с сохранением информации о температурных характеристиках объектов в разных частотных диапазонах.

Технический результат предлагаемого технического решения достигается применением способа повышения разрешающей способности изображений в многоканальных РТЛС, который заключается в сканировании зоны обзора по азимуту и углу места несколькими совмещенными антеннами РТЛС с разными ДН, принимающими сигналы в разных частотных диапазонах, формируют матрицы РТИ Y1, Y2, …, YQ по числу антенн, которые затем совместно обрабатывают, отличающийся тем, что матрицы Y1, Y2, …, YQ умножают на определенные коэффициенты μ1, μ2, …, μQ, рассчитанные заранее, сворачивают построчно полученные матрицы μ1Y1, μ2Y2, …, μQYQ в один вектор измерений , который умножают справа на матрицу весовых коэффициентов Н, вычисляемую заранее, и получают вектор оценок , затем разворачивают вектор построчно в матрицу X, умножают эту матрицу на коэффициенты 1/μ1, 1/μ2, …, 1/μQ и получают матрицы Х1=(1/μ1)⋅X, Х2=(1/μ2)⋅X, XQ=(1/μQ)⋅X восстановленного изображения зоны обзора с повышенным пространственным разрешением в разных частотных диапазонах.

Расчетная часть

Модель элементов матриц РТИ Y1={у1(i,j)}, Y2={у2(i,j)}, …, YQ={уQ(i,j)}, (М и N - количество строк и столбцов матриц), задается следующим выражением:

где уq(i,j) - i-й, j-й элемент матрицы Yq; αq(i,j) - функция рассеяния, описывающая действие ДН q-й антенны и тракта первичной обработки q-го канала; , элемент искомой матрицы изображения Xq={xq(i,j)} в q-м частотном диапазоне; (2m+1) и (2n+1) - размеры области определения функций αq(i,j) по углу места и азимуту в числе элементов дискретизации; pq(i,j) - нормальный шум аппаратуры q-го канала.

Задача заключается в нахождении матриц Xq={xq(i,j)} по совокупности наблюдений Y1, Y2, …, YQ на основе известных характеристик αq(i,j), .

Для модели наблюдений вида (1) задача решается известными методами восстановления изображений [5] независимо для каждой матрицы Yq. При одинаковой точности восстановления матриц Y1, Y2, …, YQ, присущей методу восстановления, разрешающая способность изображений Х1, Х2, …, XQ получается разной из-за различия ширины ДН антенн. При этом не достигается потенциально достижимая точность восстановления, получаемая при совместной обработке матриц Y1, Y2, …, YQ для модели наблюдений вида:

где, в отличие от модели (1), искомое изображение X={x(i,j)} одинаково во всех q-x каналах. Различие Xq проявляется в интенсивности и проникающей способности радиотеплового излучения в разных частотных диапазонах, что отражается на амплитудах элементов матриц Xq.

Примем справедливость существования коэффициентов μ1, μ2, …, μQ, таких, что выполняются равенства:

μ1X12Х2=…=μQXQ=X,

где Х - гипотетическое изображение, которое в разных частотных диапазонах воспринимается как Хq

Тогда Х1=(1/μ1)X, Х2=(1/μ2)X, … XQ=(1/μQ)X и модель (1) принимает вид:

или

что дает основание для применения предложенного способа.

Коэффициенты μ1, μ2, …, μQ находятся эмпирически из соображений наилучшей четкости восстановления контрольных изображений X и затем используются без изменения для данного класса изображений.

Задача восстановления X по совокупности наблюдений μ1Y1, μ2Y2, …, μQYQ решается известным [3, 5] матричным методом. При этом модель (3) записывается в векторно-матричной форме:

где - вектор всей совокупности наблюдений μqуq(i,j), , выписанных построчно из матриц Yq; A={a(i,j)} - матрица, элементы которой a(i,j) получены расположением по определенному правилу значений функций αq(i,j) в первоначально обнуленной матрице А; - вектор искомого изображения, при построчном переписыванием элементов x(i,j) из матрицы Х; - вектор шумов, составленный из pq(i,j).

Оптимальная оценка вектора при отсутствии информации относительно X и Р находится минимизацией квадрата евклидовой нормы

т.е. методом наименьших квадратов, T - символ транспонирования.

Необходимое условие существования экстремума функции (5) дает известное выражение вектора оптимальных оценок:

где δ - параметр регуляризации (малое положительное число), необходимый для устойчивого обращения матрицы ATA; Е - единичная матрица.

Матрица Н в (6), вычисляемая заранее, является псевдообратной для А и также может быть найдена сингулярным разложением А, например, в среде Matlab: H=pinv(A, δ).

Элементы найденного в (6) вектора построчно заполняют матрицу X* восстановленного изображения X.

Результаты моделирования

Для двухканальной системы с двумя антеннами (Q=2) моделировалось изображение X объекта в виде геометрической фигуры в составе матрицы размером M×N=25×25. Функция αq(i,j) задавалась экспонентой с квадратичным показателем степени, взятым с коэффициентом kq. В первой матрице РТИ Y1, полученной в соответствии с (1) для широкой ДН (k1=0,1), амплитуда объекта принималась равной А1, во второй матрице Y2,, полученной для узкой ДН (k1=0,3), амплитуда объекта А2. Изображение объекта восстанавливалось по правилу (6) для разных значений ΔА=А21 при А1=5 и А2>5 или А2=5 и А1>5. Различие амплитуд определялось различием частотных диапазонов антенн. Восстановленное изображение X* нормировалось делением всех элементов матрицы X* на максимальный элемент и умножением на А1, после чего сравнивалось с моделируемым изображением X1. Это давало возможность оценить по амплитуде четкость изображения.

При фиксированном коэффициенте μ1=1 выбирался коэффициент μ2 по минимуму оценки среднеквадратического отклонения (СКО) ошибки восстановления. Оптимальным значениям μ2 соответствовала минимальная оценка СКО на уровне 0,35-0,37 при ΔА>0 и на уровне 0,4-0,5 при ΔА<0. Оптимальные значения μ2 представлены в таблице в зависимости от ΔА.

Найденные для различных значений ΔА (различных частотных диапазонов) оптимальные значения μ2 использовались для получения искомых изображений: Х1*=X*, Х2*=(1/μ2)X*. Для оценки потенциально достижимой точности находилось СКО ошибки восстановления для модели (2), которое составило 0,35.

Выводы

Результаты модельного эксперимента показывают возможность применения предложенного способа в многоканальных РТЛС с несколькими антеннами. Способ позволяет повысить пространственное разрешение изображения объектов на местности или воздушной обстановки в равной степени для всех каналов с сохранением температурных характеристик частотных диапазонов.

Литература

1. Николаев А.Г., Перцов С.В. Радиотеплолокация (пассивная радиолокация). М.: Сов. радио, 1964. 335 с.

2. Шарков Е.А. Радиотепловое дистанционное зондирование Земли: физические основы: в 2 т. / Т. 1. М.: ИКИ РАН, 2014. 544 с.

3. Патент RU 2368917 С1. Способ формирования изображений в многоканальных РТЛС и РЛС / В.К. Клочко. МПК: G01S 13/89. Приоритет 21.12.2007. Опубл.: 27.09.2009. Бюл. №27.

4. Патент RU 2379706 С2. Способ повышения разрешающей способности радиотепловых изображений / В.К. Клочко, В.В. Курилкин, А.А. Куколев, С.А. Львов. МПК: G01S 13/89. Приоритет 28.03.2008. Опубл.: 20.01.2010. Бюл. №2.

5. Василенко Г.И., Тараторин А.М. Восстановление изображений. М.: Радио и связь, 1986. 304 с.

Способ повышения разрешающей способности изображений в многоканальных радиотеплолокационных станциях (РТЛС), заключающийся в сканировании зоны обзора по азимуту и углу места несколькими совмещенными антеннами РТЛС с разными диаграммами направленности, принимающими сигналы в разных частотных диапазонах, формировании матриц радиотеплового изображения Y, Y, …, Y по числу антенн, которые затем совместно обрабатывают, отличающийся тем, что матрицы Y, Y, …, Y умножают на определенные коэффициенты μ, μ, …, μ, рассчитанные заранее, сворачивают построчно полученные матрицы μY, μY, …, μY в один вектор измерений , который умножают справа на матрицу весовых коэффициентов Н, вычисляемую заранее, и получают вектор оценок , затем разворачивают вектор построчно в матрицу X, умножают эту матрицу на коэффициенты 1/μ, 1/μ, …, 1/μ и получают матрицы Х=(1/μ)⋅X, Х=(1/μ)⋅X, X=(1/μ)⋅X восстановленного изображения зоны обзора с повышенным пространственным разрешением в разных частотных диапазонах.
СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС
СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС
СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ИЗОБРАЖЕНИЙ В МНОГОКАНАЛЬНЫХ РТЛС
Источник поступления информации: Роспатент

Showing 1-10 of 88 items.
25.08.2017
№217.015.aafb

Способ восстановления изображений в двухканальной сканирующей системе

Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн. Технический результат направлен на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью...
Тип: Изобретение
Номер охранного документа: 0002612323
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ac0f

Способ формирования изображений объектов в двухканальной радиометрической системе

Изобретение относится к пассивным системам радионаблюдений за объектами с помощью двухканального сканирующего радиометра, работающего в миллиметровом диапазоне длин волн, и может быть использовано также в оптических системах инфракрасного диапазона. Технический результат направлен на повышение...
Тип: Изобретение
Номер охранного документа: 0002612193
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.c638

Ионный источник для электростатического ракетного двигателя

Изобретение относится к области электростатических ионных двигателей. Ионный источник содержит ионные и электронные эмиттеры, изготовленные из серебра высокой степени чистоты в виде конусов или пирамид, выполняющих роль резервуаров рабочего вещества, причем поверхность ионных эмиттеров покрыта...
Тип: Изобретение
Номер охранного документа: 0002618761
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0ba

Способ увеличения скорости электрического ветра и устройство для его осуществления

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д. Способ увеличения скорости электрического ветра, заключающийся в подаче постоянного...
Тип: Изобретение
Номер охранного документа: 0002621386
Дата охранного документа: 05.06.2017
26.08.2017
№217.015.de01

Автокомпенсатор доплеровских сдвигов фазы помех

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Предложен автокомпенсатор доплеровских сдвигов фазы помех, содержащий блок оценивания фазы, первый блок задержки, первый и второй блоки комплексного умножения, блок...
Тип: Изобретение
Номер охранного документа: 0002624795
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de06

Способ обработки последовательности изображений для автоматического обнаружения танкера и оценивания его траекторных параметров при дозаправке в воздухе на фоне звездного неба

Изобретение относится к области цифровой обработки изображений и может быть использовано в бортовых системах технического зрения, предназначенных для дозаправки в воздухе летательных аппаратов, в том числе и беспилотных, методом штанга-конус на фоне звездного неба. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002624828
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.df5a

Способ определения знака разности частот и устройство для его реализации

Изобретение относится к радиотехнике и может быть использовано в дискретных системах автоматики для получения информации о знаке разности частот двух импульсных колебаний. Технический результат - повышение быстродействия. Способ определения знака разности частот основан на анализе знака и...
Тип: Изобретение
Номер охранного документа: 0002625054
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df6a

Способ формирования периодических двуполярных колебаний с заданным фазовым сдвигом и устройство для его реализации

Изобретение относится к области измерительной техники и может быть использовано для формирования периодических колебаний с заданным фазовым сдвигом. Достигаемый технический результат - реализация регулируемого фазового сдвига двуполярных колебаний одинаковых частот в диапазоне [0, 2] с...
Тип: Изобретение
Номер охранного документа: 0002625047
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e15e

Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля импульсного электронного пучка

Изобретение относится к датчикам для измерения тока электронного пучка и может найти применение в исследовательских и промышленных установках. Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля плотности тока импульсного электронного пучка содержит нижнюю...
Тип: Изобретение
Номер охранного документа: 0002625601
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.edba

Вычислитель для компенсации помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628907
Дата охранного документа: 22.08.2017
Showing 1-10 of 32 items.
27.11.2014
№216.013.0b00

Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат...
Тип: Изобретение
Номер охранного документа: 0002534224
Дата охранного документа: 27.11.2014
20.01.2015
№216.013.1fb5

Способ формирования трехмерного изображения земной поверхности и воздушной обстановки с помощью антенной решетки

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки. Достигаемый технический результат - формирование трехмерного изображения объектов отражения в зоне обзора с...
Тип: Изобретение
Номер охранного документа: 0002539558
Дата охранного документа: 20.01.2015
10.04.2015
№216.013.3c77

Способ измерения угловых координат воздушных целей с помощью доплеровской рлс

Изобретение относится к радиолокации, а именно к радиолокационным станциям (РЛС) наблюдения за воздушной обстановкой, работающим в режиме узкополосной доплеровской фильтрации. Технический результат направлен на однозначное измерение угловых координат обнаруженных воздушных целей в зоне...
Тип: Изобретение
Номер охранного документа: 0002546967
Дата охранного документа: 10.04.2015
27.11.2015
№216.013.9550

Способ формирования трехмерного изображения земной поверхности в бортовой доплеровской рлс с линейной антенной решеткой

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам (РЛС) наблюдения за земной поверхностью на базе доплеровской радиолокационной станции с линейной антенной решеткой. Достигаемый технический результат - формирование трехмерного изображения поверхности в зоне...
Тип: Изобретение
Номер охранного документа: 0002569843
Дата охранного документа: 27.11.2015
10.01.2016
№216.013.9f10

Способ формирования трехмерного изображения земной поверхности в бортовой четырехканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью на базе доплеровской радиолокационной станции (РЛС) с четырехэлементной антенной решеткой. Достигаемый технический результат - формирование трехмерного изображения поверхности в...
Тип: Изобретение
Номер охранного документа: 0002572357
Дата охранного документа: 10.01.2016
13.01.2017
№217.015.7b59

Способ восстановления изображений объектов по разреженной матрице радиометрических наблюдений

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью радиометра со сканирующей по азимуту и углу места антенной. Достигаемый технический результат направлен на восстановление изображений объектов при шаге сканирования антенны...
Тип: Изобретение
Номер охранного документа: 0002600573
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8d73

Способ восстановления изображений при неизвестной аппаратной функции

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение...
Тип: Изобретение
Номер охранного документа: 0002604720
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.aafb

Способ восстановления изображений в двухканальной сканирующей системе

Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн. Технический результат направлен на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью...
Тип: Изобретение
Номер охранного документа: 0002612323
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ac0f

Способ формирования изображений объектов в двухканальной радиометрической системе

Изобретение относится к пассивным системам радионаблюдений за объектами с помощью двухканального сканирующего радиометра, работающего в миллиметровом диапазоне длин волн, и может быть использовано также в оптических системах инфракрасного диапазона. Технический результат направлен на повышение...
Тип: Изобретение
Номер охранного документа: 0002612193
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ca02

Радиометрический комплекс

Изобретение относится к микроволновой радиометрии, а именно к системам пассивного радиовидения, и может быть использовано для определения радиотепловых контрастов объектов и получения радиотеплового изображения объектов излучения в двух участках миллиметрового диапазона длин волн. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002619916
Дата охранного документа: 19.05.2017
+ добавить свой РИД