×
24.11.2019
219.017.e5d4

Результат интеллектуальной деятельности: Способ очистки металлургического кремния от углерода

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии и может быть использовано для прямой очистки металлургического кремния от углерода без использования экологически опасных технологических операций до степени чистоты солнечного кремния, используемого в фотоэлектрических преобразователях солнечной энергии в электрическую. В начале процесса очистки поддерживают температуру 1500°С, которую увеличивают до 1600°С к концу процесса, начальное давление составляет 10 Торр, которое уменьшают в процессе очистки до конечного значения 0,5 Торр, исходное содержание воды в плазменной струе, определяемое отношением количества молей воды n(НО) к количеству молей водорода n(Н) как 1:40, уменьшают в 2-4 раза до соотношения n(НО):n(Н), составляющего 1:100 на финише технологического процесса. Технический результат заключается в сокращении времеми очистки металлургического кремния от углерода при малых скоростях испарения элементарного кремния и уноса кремния из расплава в соединении SiO. 2 ил.

Ежегодное мировое производство металлургического кремния составляет около 1 миллиона тонн. В основе процесса получения металлургического кремния лежит следующая реакция, осуществляемая в печах дуговой плавки:

SiO2+2C→Si+CO.

Одно из применений металлургического кремния является получение кремния для солнечной энергетики. Кремний для солнечной энергетики должен иметь чистоту не менее 6N.

В обеспечение чистоты солнечного кремния уровня 99.9999% (6N) необходимо сокращение содержания в металлургическом кремнии таких примесей, как Fe, Al, Ca, Ti, Cr, B, P, O и С.

Одна из наиболее вредных фоновых примесей в кремнии - углерод. В солнечном кремнии содержание углерода в объеме должно быть снижено в несколько раз по сравнению с металлургическим кремнием. Его содержание не должно превышать 5⋅1016 – 5⋅1017 см-3.

Известен способ очистки «металлургического» кремния в промышленности, первый этап которого заключается в его хлорировании или гидрохлорировании. При этом образуются соединения - хлориды (хлорсиланы) - такие как SiCl4, SiH2Cl2 или SiHCl3, которые затем очищают от примесей различными способами (как правило, ректификацией). Хлориды (хлорсиланы) после очистки восстанавливают до элементарного (чаще всего поликристаллического) кремния. Наибольшее распространение на практике получил метод восстановления тетрахлорида кремния или трихлорсилана водородом. Такой процесс получения кремния, названный «Сименс-процессом» по имени компании, впервые его реализовавшей, осуществляется в специальном реакторе [1].

Недостатками данного способа и устройства являются их сложность, опасность для обслуживающего персонала и для окружающей среды, а также то, что этот процесс по-прежнему остается достаточно дорогим.

Известен способ и устройство [2] для очистки кремния, которые пригодны для экономичного и массового производства кремния высокой чистоты для солнечных элементов из металлургического кремния, содержащего бор и углерод в больших количествах. Способ заключается в том, что на поверхность расплавленного кремния, удерживаемого в контейнере, облицованном кремнеземом или огнеупорным материалом на основе диоксида кремния, направляется струя плазмы инертного газа. Для улучшения очистки инертный газ как плазмообразующий газ смешивают с 0,1-10% от объема пара и/или менее 1 г порошка диоксида кремния на литр инертного газа в нормальном состоянии.

Недостатком способа является недостаточное для практики увеличение скорости испарения примесей из кремния по сравнению с «Сименс-процессом».

Из [3] известен способ вакуумного производства кремния, пригодного для изготовления солнечных элементов из металлургического кремния. Металлургический кремний в виде расплава заливают в форму и постепенно охлаждают до твердого состояния. При охлаждении кремния поверхность жидкости нагревают или теплоизолируют для замедления затвердевания, при этом происходит предварительная очистка кремния металлургического сорта. Полученный, более чистый, чем исходный кремний вновь расплавляют и рафинируют. Фосфор удаляют расплавлением при давлении ниже атмосферного, бор и углерод - за счет обработки смесью воды и инертного газов. Рафинированный кремний отливают в пруток и подвергают очистке зонной плавкой от Fe, Al, Ti и Са.

Недостатками данного способа и устройства для его осуществления являются трудоемкость в изготовлении и сложность для промышленного использования.

Известен [4] способ вакуумной очистки кремния, заключающийся в расплавлении шихты в тигле с использованием электронно-лучевого нагрева и выдержку расплава для удаления примесей. Процесс осуществляют в три стадии. На первой стадии в вакуумную камеру вводят окислители, например пары воды, для удаления примесей, упругость паров которых ниже упругости паров кремния. В результате реакций эти примеси образуют легкоудаляемые соединения с высокой упругостью паров. Затем в глубоком вакууме удаляют примеси, имеющие упругость паров выше, чем упругость паров кремния, а на третьей стадии проводят направленную кристаллизацию расплава для оттеснения примесей, в частности металлов, в приповерхностную область кристаллизуемого объема, которую на финише удаляют.

Недостатком данного способа является то, что процесс очистки осуществляют сканированием луча по поверхности расплава, что приводит к разогреву кремния лишь чуть выше температуры его плавления. Поэтому, с одной стороны, увеличиваются энергозатраты на проведение процесса очистки от примесей с высокой упругостью паров, а с другой стороны, не обеспечивается разогрев расплава до температуры, соответствующей необходимой скорости процесса испарения упомянутых примесей и соединений с упругостью паров выше, чем у кремния.

Известен [5] способ вакуумной очистки кремния (прототип), включающий загрузку очищаемого кремния в тигель, расплавление его с использованием электронно-лучевого нагрева под вакуумом, выдержку расплава в тигле для испарения примесей и его кристаллизацию с получением очищенного кремния. При этом выдержку расплава осуществляют при интенсивном нагреве центральной части поверхности расплава и отводе тепла от верхней части стенки тигля на уровне поверхности расплава и от центральной части днища тигля. Отвод тепла от верхней части стенки тигля осуществляют с большей интенсивностью по сравнению с отводом тепла от центральной части дна тигля. Кристаллизацию расплава ведут с отводом тепла только от днища тигля при равномерном снижении интенсивности нагрева поверхности расплава. Предлагаемые устройства содержит вакуумную камеру, тигель с кремнием, электронно-лучевую пушку, холодильник, установленный на наружной поверхности стенки тигля в его верхней части. Они содержит также охлаждаемую емкость, в которой соосно размещен тигель, теплоизолятор, расположенный между тиглем и охлаждаемой емкостью, и теплопроводный элемент, расположенный между охлаждаемой емкостью и дном тигля по их продольной оси.

Недостатками способа и устройств его реализации является недостаточная для практики скорость испарения основных примесей, в частности, углерода, связанную с низкой температурой разогрева расплава кремния электронным лучом, сложностью изготовления и эксплуатации источников электронов и их ненадежностью.

Предлагаемым изобретением решается задача очистки кремния, содержащего большое количество углерода; снижения временных, энергетических и материальных затрат.

Технический результат заключается в том, что сокращается время очистки металлургического кремния от углерода при малых скоростях испарения элементарного кремния и уноса кремния из расплава в соединении SiO.

Технический результат достигается за счет того, что способ вакуумной очистки кремния включает загрузку очищаемого кремния в тигель, расплавление в тигле с использованием нагревателей и перемешивание кремния при температуре чуть выше температуры плавления около 1500° Си давлении около 10 Торр при обдувании поверхности расплава плазменной струей инертного газа (ИГ) с добавлением увлажненного водорода в приблизительном молярном соотношении n(Н2):n(Н2О)≈40:1, последующее снижение давления атмосферы в технологической камере до величины порядка 0.5 Торр с одновременным повышением температуры до приблизительно 1600°С и уменьшением примерно в 3 раза содержания воды в плазменной струе.

Сущность способа демонстрируется фиг. 1 и 2. На фиг. 1 представлены рассчитанные в соответствии с законами термодинамики зависимости количеств равновесных соединений углерода (карбидов) от температуры при стандартном для технологий очистки кремния давлении 10 Торр в системе, состоящей из n=100 кмолей химически неактивного Ar, 1 кмоля Si, 1 кмоля H2, 10000ppmH2O и 100ppmC. Здесь и далее вертикальной пунктирной линией показана температура плавления кремния. Из представленных данных может быть сделан вывод о том, что углерод из расплава при его обдувании водяным паром уносится в основном в виде угарного газа СО. Водород, в данном случае, добавляется в смесь лишь для предотвращения формирования твердой корки на поверхности расплава и на образование карбидов не оказывает влияния. Его максимальное количество определяется соображениями безопасности и эффективности использования.

В момент начала процесса очистки содержание углерода по условию решаемой проблемы является высоким, поэтому на начальной стадии очистки основная масса СО удаляется при небольших энергозатратах разогревом до температуры чуть выше температуры плавления около 1500°С при обдувании поверхности расплава плазменной струей инертного газа с добавлением увлажненного водорода в приблизительном соотношении n(Н2):n(Н2О) =40:1. Кривая 1 на фиг. 2 представляет зависимость количества испаряемого СО в зависимости от температуры в системе, состоящей из 100 кмолей химически неактивного Ar,1 кмоля Si, 1 кмоля H2, 10000ppmH2O и 500 ppmC при давлении Р=10 Торр. Знаком «» на кривой 1 Фиг. 2 отмечена интенсивность испарения СО, соответствующий температуре 1500°С выдержки расплава на данной стадии процесса.

Уменьшение содержания воды ниже, чем 10000 ppm в моделируемой термодинамической системе недопустимо вследствие снижения, в таком случае, интенсивности удаления СО, соответствующего горизонтальному участку зависимости 1 в диапазоне температур от 800°С до 1600°С. Увеличение содержание воды также нежелательно из-за увеличения скорости уноса кремния из расплава в соединении SiO.

Итак, на начальной стадии техпроцесса газ СО уносит из расплава углерод, поэтому содержание углерода сокращается и, как следствие, снижается вероятность и скорость образования СО.

На кривой 2 фиг. 2 продемонстрирован отмеченный факт. Кривая 2 фиг. 2 представляет график зависимости равновесных количеств СО от температуры в рассматриваемой термодинамической системе, но с меньшим содержанием углерода: 100 кмолей химически неактивного Ar,1 кмоля Si, 1 кмоля H2, 10000ppmH2O и 100 ppmC. Из анализа зависимости можно заключить, что интенсивность образования газообразного СО на кривой 2, соотвествующий температуре Т=1500°С, значительно снижен по сравнению с исходной системой, содержащей 500 ppmC, и обозначен на кривой 2 треугольником.

Восстановление скорости испарения СО до первоначального уровня возможно за счет снижения давления в камере. Практически допустимо снижение давления в технологической камере до величины Р=0.5 Торр. Кривая 3 Фиг. 2 соответствует такому давлению. Величина интенсивности удаления СО, равная интенсивности испарения СО в исходной системе, обозначена на кривой 3 кружком и соответствует температуре 1600°С. Таким образом, финишная стадия процесса очистки кремния от углерода осуществляется при снижении давления до Р=0.5 Торр и увеличении температуры расплава до 1600°С. При этом температурный предел 1700°С активного испарения чистого кремния здесь не превышен. Расчеты показывают, что в указанных условиях очистки допустимо уменьшение молярного содержания воды примерно в три раза в плазменной струе инертного газа по сравнению с исходным соотношением n(Н2):n(Н2О) =40:1 без заметного снижения интенсивности испарения СО в области температуры 1600°С. Уменьшение содержания воды позволяет скомпенсировать рост скорости нежелательного уноса кремния в соединении SiO при увеличении температуры.

Таким образом, решение технической задачи достигается тем, что способ очистки кремния от углерода в замкнутой вакуумной камере с размещаемой в ней загрузкой металлургического кремния заключается в расплавлении загрузки кремния, перемешивании расплава и обдувании поверхности расплава плазменной струей смеси инертного газа с увлажненным водородом, при этом поддерживаемая в начале процесса очистки температура около 1500°С увеличивается приблизительно до 1600°С к концу процесса, начальное давление около 10 Торр уменьшается в процессе очистки до конечного значения около 0.5 Торр, исходное содержание воды в плазменной струе, определяемое приблизительным отношением количества молей воды n(Н2О) к количеству молей водорода n(Н2) как 1:40, уменьшается приблизительно в 2 - 4 раза до примерного соотношения n(Н2О):n(Н2)≈1:100 на финише технологического процесса.

ЛИТЕРАТУРА

1. Reuschel Konrad.Method and apparatus for producing hyper-pure semiconductor material, particularly silicon.US2999735A.Priority date 1959-06-11/ Schweickert Hans, Reuschel Konrad, Gutsche Heinrich. Production of high-purity semiconductor materials for electrical purposes. US3011877A.Priority date 1956-06-25 / David L. Parsels. Method and apparatus for making elongated Si and SiC structures. US3961003A. Priority date 1972-05-17.

2. Yuge Noriyoshi etc. Method and apparatus for purifying silicon. EP0459421 B1,Priority date1990-05-30.

3. БабаХироюкиидр. Process for production of silicon for use in solar cells. RU2154606 C2. Priority date1997-03-24.

4. Norichika Yamauchi, Takehiko Shimada, Minoru Mori. Method and apparatus for refining silicon using an electron beam. US20070077191A1. Priority date2005-08-16.

5. Кравцов А.А.Способ вакуумной очистки кремния и устройство для его осуществления (варианты). Патент РФ на изобретение №:2403299 Дата публикации 10 ноября 2010.

Способ очистки кремния от углерода в замкнутой вакуумной камере с размещаемой в ней загрузкой металлургического кремния, включающий расплавление загрузки кремния, перемешивание расплава и обдувание поверхности расплава плазменной струей смеси инертного газа с увлажненным водородом, отличающийся тем, что поддерживаемую в начале процесса очистки температуру 1500°С увеличивают до 1600°С к концу процесса, начальное давление, составляющее 10 Торр, уменьшают в процессе очистки до конечного значения 0,5 Торр, исходное содержание воды в плазменной струе, определяемое отношением количества молей воды n(НО) к количеству молей водорода n(Н) как 1:40, уменьшают в 2-4 раза до соотношения n(НО):n(Н), составляющего 1:100 на финише технологического процесса.
Способ очистки металлургического кремния от углерода
Способ очистки металлургического кремния от углерода
Источник поступления информации: Роспатент

Showing 1-10 of 88 items.
25.08.2017
№217.015.aafb

Способ восстановления изображений в двухканальной сканирующей системе

Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн. Технический результат направлен на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью...
Тип: Изобретение
Номер охранного документа: 0002612323
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ac0f

Способ формирования изображений объектов в двухканальной радиометрической системе

Изобретение относится к пассивным системам радионаблюдений за объектами с помощью двухканального сканирующего радиометра, работающего в миллиметровом диапазоне длин волн, и может быть использовано также в оптических системах инфракрасного диапазона. Технический результат направлен на повышение...
Тип: Изобретение
Номер охранного документа: 0002612193
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.c638

Ионный источник для электростатического ракетного двигателя

Изобретение относится к области электростатических ионных двигателей. Ионный источник содержит ионные и электронные эмиттеры, изготовленные из серебра высокой степени чистоты в виде конусов или пирамид, выполняющих роль резервуаров рабочего вещества, причем поверхность ионных эмиттеров покрыта...
Тип: Изобретение
Номер охранного документа: 0002618761
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0ba

Способ увеличения скорости электрического ветра и устройство для его осуществления

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д. Способ увеличения скорости электрического ветра, заключающийся в подаче постоянного...
Тип: Изобретение
Номер охранного документа: 0002621386
Дата охранного документа: 05.06.2017
26.08.2017
№217.015.de01

Автокомпенсатор доплеровских сдвигов фазы помех

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Предложен автокомпенсатор доплеровских сдвигов фазы помех, содержащий блок оценивания фазы, первый блок задержки, первый и второй блоки комплексного умножения, блок...
Тип: Изобретение
Номер охранного документа: 0002624795
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de06

Способ обработки последовательности изображений для автоматического обнаружения танкера и оценивания его траекторных параметров при дозаправке в воздухе на фоне звездного неба

Изобретение относится к области цифровой обработки изображений и может быть использовано в бортовых системах технического зрения, предназначенных для дозаправки в воздухе летательных аппаратов, в том числе и беспилотных, методом штанга-конус на фоне звездного неба. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002624828
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.df5a

Способ определения знака разности частот и устройство для его реализации

Изобретение относится к радиотехнике и может быть использовано в дискретных системах автоматики для получения информации о знаке разности частот двух импульсных колебаний. Технический результат - повышение быстродействия. Способ определения знака разности частот основан на анализе знака и...
Тип: Изобретение
Номер охранного документа: 0002625054
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df6a

Способ формирования периодических двуполярных колебаний с заданным фазовым сдвигом и устройство для его реализации

Изобретение относится к области измерительной техники и может быть использовано для формирования периодических колебаний с заданным фазовым сдвигом. Достигаемый технический результат - реализация регулируемого фазового сдвига двуполярных колебаний одинаковых частот в диапазоне [0, 2] с...
Тип: Изобретение
Номер охранного документа: 0002625047
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e15e

Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля импульсного электронного пучка

Изобретение относится к датчикам для измерения тока электронного пучка и может найти применение в исследовательских и промышленных установках. Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля плотности тока импульсного электронного пучка содержит нижнюю...
Тип: Изобретение
Номер охранного документа: 0002625601
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.edba

Вычислитель для компенсации помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628907
Дата охранного документа: 22.08.2017
Showing 1-10 of 26 items.
20.08.2013
№216.012.619c

Электростатический энергоанализатор заряженных частиц

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела. Сущность изобретения заключается в том, что электростатический энергоанализатор заряженных частиц содержит коаксиально размещенные внутренний и...
Тип: Изобретение
Номер охранного документа: 0002490620
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.621d

Изотраекторный масс-спектрометр

Изобретение относится к области масс-анализа потоков ионов, эмиттируемых с поверхности твердого тела под воздействием первичного излучения, и может быть использовано для улучшения аналитических свойств масс-спектрометров, используемых для исследования объектов твердотельной микро- и...
Тип: Изобретение
Номер охранного документа: 0002490749
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.621e

Электростатический анализатор энергий заряженных частиц

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела, и может быть использовано для улучшения аналитических и потребительских свойств электронных спектрометров, используемых для исследования объектов...
Тип: Изобретение
Номер охранного документа: 0002490750
Дата охранного документа: 20.08.2013
10.03.2014
№216.012.aa40

Способ определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников

Использование: для определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников. Сущность: заключается в том, что поверхность анализируемого объекта облучают ионами инертных газов низких энергий, регистрируют энергетический спектр отраженных ионов...
Тип: Изобретение
Номер охранного документа: 0002509299
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa42

Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины

Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с...
Тип: Изобретение
Номер охранного документа: 0002509301
Дата охранного документа: 10.03.2014
20.04.2014
№216.012.bb3e

Способ изготовления фотоэмиттера с отрицательным электронным сродством для инфракрасного диапазона

Изобретение относится к области эмиссионной и наноэлектроники и может быть использовано в разработке и в технологии производства фотоэлектронных преобразователей второго поколения, эмиттеров с отрицательным электронным сродством для приборов ИК-диапазона. Способ изготовления фотоэмиттера с...
Тип: Изобретение
Номер охранного документа: 0002513662
Дата охранного документа: 20.04.2014
10.11.2014
№216.013.04a8

Способ измерения контактной разности потенциалов

Изобретение относится измерительной технике и представляет собой способ измерения контактной разности потенциалов между проводящими материалами (металлами, полупроводниками, электролитами) и может быть использовано для измерения электродных потенциалов, работы выхода поверхности, для контроля...
Тип: Изобретение
Номер охранного документа: 0002532590
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b16

Способ определения атомного состава активных нанопримесей в жидкостях

Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред. Способ...
Тип: Изобретение
Номер охранного документа: 0002534246
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ee3

Способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для субмикронных технологий

Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени...
Тип: Изобретение
Номер охранного документа: 0002535228
Дата охранного документа: 10.12.2014
27.09.2015
№216.013.7e7c

Электростатическая линза со стабильным фокусным расстоянием

Изобретение относится к области электронного приборостроения и может быть использовано при разработке электронно-оптических устройств со стабильным по отношению к колебаниям потенциалов электродов фокусным расстоянием. Электростатическая линза состоит из трех аксиально-симметричных...
Тип: Изобретение
Номер охранного документа: 0002563977
Дата охранного документа: 27.09.2015
+ добавить свой РИД