×
02.10.2019
219.017.d08a

Результат интеллектуальной деятельности: НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ

Вид РИД

Изобретение

№ охранного документа
0002700442
Дата охранного документа
17.09.2019
Аннотация: Изобретение относится к области металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для литья деталей с монокристаллической структурой, например лопаток турбин, работающих при температурах 1050°С и выше. Никелевый жаропрочный сплав для монокристаллического литья содержит, мас.%: С 0,002-0,1, Cr 4,0-8,0, Со 6,0-12,0, W 3,0-8,0, Мо 4,0-8,0, Al 4,6-6,6, Та 6,5-11,0, Hf 0,1-1,0, Re 1,0-3,0, Y 0,001-0,1, La 0,001-0,1, Се 0,001-0,1, Si 0,01-0,2, Mn 0,01-0,2, В 0,005-0,03, Ni – остальное. Обеспечивается соотношение компонентов: 15,4W - 0,9WTa + 28,8Re – 1,7TaRe ≥ (1,0W2 + 3,1ReW + 2,1Re2) ≥16,1W - 1,2WTa + 17,5Re - 1,3TaRe. Сплав характеризуется жаропрочностью при удельном весе 8,84-8,86 г/см. 1 ил., 2 табл., 1 пр.

Изобретение относится к области металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для литья деталей с монокристаллической структурой, например, лопаток турбин, работающих при температурах 1050°С и выше.

Постоянно растущие требования к авиационной, ракетно-космической и энергетической технике приводят к необходимости непрерывного улучшения эксплуатационных характеристик жаропрочных никелевых сплавов.

Развитие жаропрочных никелевых сплавов с монокристаллической структурой, используемых для изготовления рабочих и сопловых лопаток газовых турбин, является ведущим направлением, обеспечивающим значительное повышение параметров и надежности современных газотурбинных двигателей.

Достигнутое увеличение жаропрочных свойств обеспечивается за счет совершенствования теории легирования, в том числе внедрения в составы сплавов таких сравнительно новых элементов, как Та и Re, а в настоящее время еще и представитель платиновой группы крайне дорогой рутений. Эти элементы, обладая высокой температурой плавления и низкой диффузионной подвижностью, обеспечивают:

- заметное повышение прочности межатомных связей;

- существенное улучшение сопротивления деформации ползучести и возникновению усталостных трещин;

- значительное улучшение структурной стабильности.

Известен литейный жаропрочный сплав на никелевой основе ЖС32-ВИ В.П. Кузнецов, В.П. Лесников, И.П. Конакова Структура и свойства жаропрочного никелевого сплава ЖС32-ВИ. Справочник Екатеринбург. Изд-во «Квист». 2010. - 84 с.), предназначенный для монокристального литья рабочих и сопловых лопаток турбин, имеющий следующий состав

углерод 0,15
хром 4,9
кобальт 9,0
вольфрам 8,5
молибден 1,0
алюминий 5,9
рений 4,0
тантал 4,0
ниобий 1,6
никель остальное

Сплав имеет достаточно высокую жаропрочность, (его ) и плотность ρ=8,76 г/см3. Однако этот уровень является недостаточным для решения поставленных задач. Кроме того он является дорогим, поскольку содержит 4,0% рения. Указанное обстоятельство серьезно снижает объемы практического применения этого сплава.

Известен также литейный жаропрочный сплав на основе никеля для литья лопаток с монокристаллической структурой CMSX-8, разработанный фирмой Cannon-Muskegon (США), состав которого был представлен ею на международной конференции «Superalloys 2012», (Франция) - опубликованном в материалах конференции Jacqueline В. Wahl и Ken Harris «New Single Crystal Superalloys, CMSX-7 and CMSX-8» в сборнике «Superalloys 2012», TMS-2012, pp. 179-188.

Состав сплава CMSX-8, мас, %

Cr 5,4
Co 10,0
W 8,0
Mo 0,6
Al 5,7
Ti 0,7
Та 8,0
Re 1,5
Hf 0,1
Ni остальное

Сплав имеет жаропрочность - и удельный вес ρ=8,76 г/см3, соответствующий сплаву ЖС32-ВИ.

Кроме того, его положительной особенностью является наличие в составе небольшого количества дорогостоящего рения. Однако этот уровень жаропрочности является недостаточным для решения поставленных задач.

Наиболее близким к предлагаемому является жаропрочный никелевый сплав для монокристаллического литья, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, гафний, иттрий, лантан, церий, кремний, марганец, бор, имеющий следующий состав, мас. %.

С 0.002-0.1
Cr 4.0-8.0
Со 9.0-14.0
W 7.0-10,0
Мо 1.0-5.0
Al 4.0-6.0
Та 6.0-10.0
Hf 0.1-1.0
Y 0.001-0.1
La 0.001-0.1
Се 0.001-0.1
Si 0.01-0.2
Mn 0.01-0.2
В 0.005-0.03
Ni остальное,

(описание изобретения к патенту РФ №2626118, С22С 19/05, опубл. 21.07.2017. Бюл. №21).

Сплав не содержит рений и совпадает с предлагаемым сплавом по наибольшему количеству элементов, имеет жаропрочность и удельный вес ρ=8.84 г/см3, что является недостаточным для перспективных газотурбинных двигателей.

Технической задачей изобретения является создание экономнолегированного литейного жаропрочного сплава с монокристаллической структурой на никелевой основе с низким содержанием высокодефицитного и дорогого рения (не более 3,0 мас. %) и с сохранением удельного веса на уровне 8,84-8,86 г/см3, при этом длительная прочность сплава должна быть выше, чем у сплава по патенту РФ № 2626118, имеющего

Техническим результатом изобретения является повышение жаропрочности сплава до уровня при удельном весе 8,84-8,86 г/см3 за счет введения в состав сплава рения при определенном соотношении концентраций вольфрама, тантала и рения.

Технический результат достигается тем, что никелевый жаропрочный сплав для монокристаллического литья, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, гафний, иттрий, лантан, церий, кремний, марганец, бор, в отличие от известного, дополнительно содержит рений, при следующем соотношении компонентов, мас. %:

С 0.002-0.1
Cr 4.0-8.0
Со 6.0-12.0
W 3.0-8.0
Мо 4.0-8.0
Al 4.6-6.6
Та 6.5-11.0
Hf 0.1-1.0
Re 1.0-3.0
Y 0.001-0.1
La 0.001-0.1
Се 0.001-0.1
Si 0.01-0.2
Mn 0.01-0.2
В 0.005-0.03
Ni остальное,

и при соблюдении условия:

15,4W - 0,9WTa + 28,8Re - 1.7TaRe≥(1,0W2 + 3,1ReC + 2,1Re2)≥16,1W - 1,2WTa + 17,5Re - 1,3TaRe

Изобретение поясняется фиг., на которой изображено трехмерное пространство вольфрам, тантал и рений для определения области оптимальных концентраций этих элементов.

Химический состав заявляемого сплава отличается от прототипа наличием рения, а также концентрацией кобальта, вольфрама и молибдена.

Введение в сплав рения позволяет дополнительно увеличить жаропрочность сплава. Принимая во внимание зависимость (1), которая указывает на то, что эффективность рения для повышения жаропрочности в 1,16 раз выше суммарной эффективности вольфрама и молибдена, это позволило частично снизить концентрацию вольфрама и молибдена и сохранить плотность сплава на приемлемом уровне. Также, для сохранения оптимального значения параметра мисфит в сплаве была снижена концентрация кобальта.

На основании обобщения приведенных в отечественной и зарубежной литературе данных по составам, свойствам и особенностям структуры более чем 170 жаропрочных никелевых сплавов с монокристальной структурой нами были построены зависимости «состав-свойства» для этой группы материалов (Логунов. А.В Жаропрочные никелевые сплавы для лопаток и дисков газовых турбин / Рыбинск ООО «Издательский дом «Газотурбинные технологии», 2017. - 854 с.):

где Cr, Со, W … концентрации (содержание) в сплаве хрома, кобальта, вольфрама и других элементов (мас %).

Анализ зависимостей (1) и (2) показал, что наиболее эффективное влияние на длительную прочность (с позиций ее увеличения) и удельный вес (с точки зрения его роста) оказывают вольфрам, тантал и рений. При этом гафний Hf, концентрация которого в современных высокожаропрочных сплавах составляет (0,1-0,5) мас. %, и углерод, содержащийся в монокристальных сплавах на уровне до 0,01 мас. %, вносят незначительный вклад как в жаропрочность, так и в величину их удельного веса.

Влияние алюминия и титана на длительную прочность заметно уступает воздействию вольфрама, тантала и рения, но эти элементы эффективно снижают удельный вес.

Поскольку легирующие элементы в новом сплаве такие же, как и в сплавах CMSX8 и ЖС32, однако при этом необходимо увеличить уровень жаропрочности при одновременном снижении содержания высокодефицитного рения и сохранении удельного веса, то указанная задача решалась путем многокритериальной оптимизации легирующих компонентов.

Формулы (1) и (2), если внести в них суммарную концентрацию элементов сплава по патенту РФ №2626118 (без W, Та, Re) и подставить условия , ρ≤8.84 г/см3, преобразуются в следующие зависимости:

Или:

где W, Та и Re - концентрация вольфрама, тантала и рения в сплаве (мас. %), значение 120 характеризует минимальную величину (МПа), на которую увеличивается длительная прочность сплава () при введении в него данной концентрации W, Та и Re, а значение 0,81 характеризует предельную величину (г/см3), на которую должна увеличиться плотность сплава при введении в него данной концентрации W, Та и Re.

Зависимости (5) и (6) являются условиями, ограничивающими выбор возможных значений концентрации в сплаве элементов - W, Та и Re наиболее эффективно влияющих на прочность и плотность.

Таким образом, на основании зависимостей (5) и (6) получены следующие условия определения оптимальной концентрации вольфрама, тантала и рения, обеспечивающей уровень длительной прочности :

Взяв за основу среднее содержание элементов монокристального сплава (патент РФ №26261180) (без W, Та и Re) в трехмерном пространстве вольфрам, тантал и рений определили область концентраций этих элементов. При этом, поскольку зависимости (1) и (2) являются линейными, то в трехмерном пространстве они должны представлять собой плоскости.

На фиг. в координатах W, Та и Re показаны поверхности, отвечающие равным значениям длительной прочности (точки DWY) и плотности ρ=8=8.84 г/см3 (точки ESX). Эти поверхности пересекаются по линии АВ. Искомый трехмерный объем должен быть равен или выше поверхности, ограниченной точками ADB и в то же время равен или быть ниже поверхности, образованной точками АЕВ. Одновременно укажем, что искомый сплав должен быть экономнолегированным - содержание рения равно 3 мас % и менее. Поэтому область возможных значений требуемого объема по координатам снижается и ограничивается пространством между точками LNRPEL и MRDM.

Таким образом, была определена область легирования Та, W и Re, обеспечивающая получение экономнолегированных никелевых жаропрочных сплавов с монокристальной структурой, имеющих удельный вес, равный или ниже удельного веса сплава ЖС32-ВИ, но при этом отличающихся меньшим содержанием дорогого и остродефицитного рения и гораздо более высокой длительной прочностью при 1000С.

Пример осуществления.

С целью экспериментальной проверки были выплавлены пять опытных составов предлагаемого сплава, содержание компонентов в которых приведено в таблице 1.

В таблице 2 представлены основные характеристики опытных составов в сравнении с аналогами.

Результаты, приведенные в таблицах 1 и 2, показывают, что новый сплав, содержащий значительно меньше дорогостоящего рения по сравнению с серийным отечественным сплавом ЖС32-ВИ (1,5 мас % вместо 4,0 мас %) обладает гораздо более высокой работоспособностью (его против 240 МПа у сплава ЖС32-ВИ).

По сравнению с перспективным сплавом США CMSX-8 новый сплав содержит одинаковые с ним количество рения, имеет такую же стоимость, при этом длительная прочность его (≥270 МПа) существенно превышает аналогичный показатель сравниваемого материала (≈ 259 МПа) при таком же удельном весе.

По сравнению с прототипом новый сплав дополнительно содержит рений, а суммарное содержание в нем тугоплавких элементов (Mo+W+Ta+Re) наиболее высокое и составляет 21,5 мас % против 19,5 мас % для прототипа, 18,1 мас % для сплава CMSX-8 и 17,5 мас % для сплава ЖС32-ВИ. При этом предельное суммарное содержание W, Та и Re контролируется зависимостью (7).

Источник поступления информации: Роспатент

Showing 21-27 of 27 items.
20.12.2019
№219.017.ef91

Камера сгорания газотурбинного двигателя

Камера сгорания газотурбинного двигателя содержит корпус, запальное устройство, топливные форсунки с внутренним топливным коллектором и трубопроводом подвода топлива, одну или несколько жаровых труб, соединенных криволинейным каналом с газосборником. Газосборник расположен внутри корпуса над...
Тип: Изобретение
Номер охранного документа: 0002709239
Дата охранного документа: 17.12.2019
20.12.2019
№219.017.ef94

Способ обеспечения устойчивости рабочих лопаток турбомашины к автоколебаниям

Изобретение относится к области двигателестроения и может быть использовано при доводке газотурбинного двигателя для обеспечения динамической прочности высоконагруженных лопаток осевых компрессоров. Технический результат - повышение жесткости лопатки за счет сближения центра масс и центра...
Тип: Изобретение
Номер охранного документа: 0002709236
Дата охранного документа: 17.12.2019
31.12.2020
№219.017.f46e

Трубчатая камера сгорания газотурбинного двигателя

Трубчатая камера сгорания газотурбинного двигателя содержит жаровые трубы, размещенные внутри кожуха. Кожух состоит из центральной и боковых цилиндрических полостей, сообщающихся между собой. В боковых полостях размещены жаровые трубы. Оси боковых полостей наклонены, взаимно сближаясь одна к...
Тип: Изобретение
Номер охранного документа: 0002710642
Дата охранного документа: 30.12.2019
21.05.2020
№220.018.1f77

Способ нанесения изоляционного покрытия на электроды-инструменты или приспособления для электрохимической обработки

Изобретение относится к области машиностроения, а именно к способу нанесения порошкового изоляционного покрытия на нерабочие части электродов-инструментов и приспособлений для электрохимической обработки металлов и сплавов, в частности для получения фасонных и профильных углублений, пазов и...
Тип: Изобретение
Номер охранного документа: 0002721238
Дата охранного документа: 18.05.2020
17.06.2020
№220.018.2717

Опора ротора с консистентной смазкой

Изобретение относится к газотурбинному двигателестроению, и может найти применение в двигателях, имеющих жесткие ограничения по габаритным размерам и массе. Опора ротора с консистентной смазкой содержит корпус, полый вал, внутри которого расположен порционер, в виде полого цилиндра, с...
Тип: Изобретение
Номер охранного документа: 0002723515
Дата охранного документа: 11.06.2020
21.06.2020
№220.018.28c9

Разгрузочное гидравлическое устройство

Изобретение относится к области машиностроения и может быть использовано в конструкциях газотурбинных двигателей (ГТД), в частности в конструкциях опор, в которых требуется снизить осевую нагрузку на радиальные, радиально-упорные или упорные подшипники. Разгрузочное гидравлическом устройство...
Тип: Изобретение
Номер охранного документа: 0002724033
Дата охранного документа: 18.06.2020
04.07.2020
№220.018.2f5c

Способ электролитно-плазменного полирования деталей из титановых сплавов

Изобретение относится к области гальванотехники и может быть использовано в авиационном и энергетическом машиностроении, в том числе при финишной обработке лопаток и других деталей ГТД и ГТУ, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности...
Тип: Изобретение
Номер охранного документа: 0002725441
Дата охранного документа: 02.07.2020
Showing 21-24 of 24 items.
23.07.2019
№219.017.b71c

Деформируемый жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений,...
Тип: Изобретение
Номер охранного документа: 0002695097
Дата охранного документа: 19.07.2019
20.08.2019
№219.017.c199

Жаропрочный никелевый сплав

Предлагаемое изобретение относится к области металлургии, в частности, к жаропрочным никелевым сплавам, получаемым методом металлургии гранул и используемым для производства деталей роторов газовых турбин, подвергаемых высоким статическим и динамическим нагрузкам в условиях работы до...
Тип: Изобретение
Номер охранного документа: 0002697674
Дата охранного документа: 16.08.2019
22.10.2019
№219.017.d8ac

Способ останова двигателя при обрыве ротора турбины

Изобретение относится к многовальным газотурбинным двигателям (ГТД) авиационного и наземного применения. Техническим результатом, на достижение которого направлено изобретение, является повышение надежности работы ГТД с применением способа останова ГТД при обрыве вала турбины, а также...
Тип: Изобретение
Номер охранного документа: 0002703581
Дата охранного документа: 21.10.2019
17.06.2020
№220.018.2717

Опора ротора с консистентной смазкой

Изобретение относится к газотурбинному двигателестроению, и может найти применение в двигателях, имеющих жесткие ограничения по габаритным размерам и массе. Опора ротора с консистентной смазкой содержит корпус, полый вал, внутри которого расположен порционер, в виде полого цилиндра, с...
Тип: Изобретение
Номер охранного документа: 0002723515
Дата охранного документа: 11.06.2020
+ добавить свой РИД