×
02.10.2019
219.017.d054

Способ получения сегнетоэлектрических пленок ΒаSrTiO

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения сегнетоэлектрической пленки Ba-SrTiO и может быть использовано для мощной сверхвысокочастотной техники. На первом этапе распыляют мишень состава BaSrTiO на подложку карбида кремния в атмосфере кислорода при давлении 2 Па и температуре подложки 700-900°С в течение времени, достаточного для создания сплошного сегнетоэлектрического слоя. На втором этапе процесс распыления прекращают и повышают температуру подложки на время, достаточное для отжига сплошного сегнетоэлектрического слоя. По окончании процесса отжига температуру подложки понижают до температуры первого этапа. Прочие технологические параметры не изменяют. Затем этапы повторяются несколько раз до получения необходимой толщины сегнетоэлектрической пленки. Технический результат состоит в получении сегнетоэлектрической пленки с высокой диэлектрической нелинейностью при низких диэлектрических потерях на подложке с высокой теплопроводностью для мощной сверхвысокочастотной техники. 2 ил., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к технологиям получения тонких пленок и может быть использовано для получения сегнетоэлектрических пленок Ba1-xSrxTiO3 для мощной сверхвысокочастотной техники.

Известен способ (Патент №US 6346424) получения сегнетоэлектрических пленок Ba1-xSrxTiO3 с диэлектрической проницаемостью (~200), путем отжига готового сегнетоэлектрического слоя в несколько стадий. На первом этапе отжига происходит быстрая термическая обработка в инертной атмосфере при температуре выше температуры подложки во время осаждения, на втором этапе происходит длительная термическая обработка в атмосфере кислорода при температуре выше температуры осаждения, но ниже температуры первого этапа. Известный способ позволяет добиться снижения токов утечки за счет восстановления кислородных вакансий во время отжига, однако диэлектрическая проницаемость данной пленки недостаточна для применения в электрически управляемых приборах современной сверхвысокочастотной электроники.

Известен способ (Заявка №WO 2007027535 (А2)) получения сегнетоэлектрических пленок Ba1-xSrxTiO3 на подложке SiC с помощью импульсного осаждения из паровой фазы или с помощью процесса высокочастотного распыления мишени без нагрева подложки, с последующим этапом отжига при температуре выше 650°С. Известный способ позволяет добиться высоких скоростей роста, тем не менее, представлена низкая диэлектрическая нелинейность и значительные потери, что обусловлено низким качеством микроструктуры пленки. Для улучшения микроструктуры пленки в способе используется отжиг при высокой температуре, тем не менее, достигаемые диэлектрические характеристики недостаточны для применения в сверхвысокочастотной технике.

Наиболее близким по совокупности существенных признаков к предлагаемому, является способ (Патент №2671614) получения сегнетоэлектрических пленок Ba1-xSrxTiO3 путем распыления мишени состава Ba1-xSrxTiO3 при нагреве подложки Аl2О3 с подслоем платины при температуре 700-900°С с периодическим прерыванием процесса распыления мишени. Общая длительность процесса осаждения определяется требуемой толщиной сегнетоэлектрического слоя. Известный способ позволяет добиться высокого значения диэлектрической нелинейности сегнетоэлектрической пленки.

Недостатком известного способа является использование дополнительного подслоя платины на подложке сапфира с недостаточно высоким коэффициентом теплопроводности, качество микроструктуры получаемых пленок, а также высокие значения диэлектрических потерь, что сужает диапазон применений данных пленок для сверхвысокочастотной (СВЧ) техники.

Задачей, решаемой изобретением, является разработка технологии получения сегнетоэлектрической пленки Ba1-xSrxTiO3 высокого структурного качества, с высокой диэлектрической проницаемостью и нелинейностью (зависимостью диэлектрической проницаемости от внешнего электрического поля) при низких диэлектрических потерях для мощной СВЧ техники.

Поставленная задача решается за счет того, что в предлагаемом способе получения сегнетоэлектрических пленок Ba1-xSrxTiO3 так же, как и в известном, распыляют мишень состава Ba1-xSrxTiO3 при температуре 700-900°С с периодическим прерыванием распыления мишени через время, достаточное для создания сплошного сегнетоэлектрического слоя, на время, достаточное для отжига сплошного сегнетоэлектрического слоя, но, в отличие от известного способа, в качестве материала подложки используют монокристаллический карбид кремния политипа 6Н, характеризующийся высоким коэффициентом теплопроводности, а во время каждого этапа отжига сплошного сегнетоэлектрического слоя температуру подложки повышают, но не превышая максимальной рабочей температуры. Общая длительность процесса осаждения определяется требуемой толщиной сегнетоэлектрического слоя.

Достигаемым техническим результатом является высокая диэлектрическая нелинейность сегнетоэлектрической пленки при низких диэлектрических потерях на подложке с высокой теплопроводностью для мощной сверхвысокочастотной техники.

Изобретение поясняется чертежами, где на фигуре 1 представлены дифрактограммы сегнетоэлектрической пленки Ba1-xSrxTiO3, полученной с периодическим прерыванием процесса распыления (промежуточный отжиг), и однослойной пленки, полученной в непрерывном процессе (без отжига), на карбиде кремния. На фигуре 2 представлены зависимости нормированной емкости (C(Eмакс)/C(E=0)) и добротности Q (величина, обратная диэлектрическим потерям) от напряженности управляющего поля Е, измеренные на частоте 1,5 ГГц для конденсаторных структур на основе пленки, полученной предлагаемым способом, и на основе однослойной пленки.

Рассмотрим пример реализации предлагаемого способа. На первом этапе распыляют мишень состава Ва0,4Sr0,6TiO3 на подложку карбида кремния в атмосфере кислорода при давлении 2 Па и температуре подложки в выбранном диапазоне температур, создавая сплошной сегнетоэлектрический слой. Диапазон температур подложки ограничен 700°С с одной стороны, что объясняется наличием посторонних полититанатных фаз при меньшей температуре, и 900°С с другой, что объясняется нестехиометрическим переносом компонентов мишени на подложку при более высокой температуре. Для первого этапа выбирается температура подложки 800°С. Длительность этапа распыления составляет 20 минут. На втором этапе процесс распыления мишени прерывается на 10 минут для отжига осажденного слоя сегнетоэлектрической пленки, а температура подложки повышается на значение 80°С (достаточное для смены механизма массопереноса: диффузия по поверхности сменяется массопереносом через газовую фазу), прочие технологические параметры не изменяются. По окончании процесса отжига температура подложки понижается до температуры первого этапа. Затем этапы повторяются несколько раз, для получения необходимой толщины сегнетоэлектрической пленки.

Суть предлагаемого метода состоит в температурном воздействии на тонкие слои сегнетоэлектрической пленки на подложке карбида кремния непосредственно в процессе напыления, что обеспечивает высокую ориентированность структуры и низкие диэлектрические потери пленки на подложке с высокой теплопроводность.

Из фигуры 1 видно, что пленка, полученная при использовании предлагаемого способа, проявляет преимущественно ориентированную структуру, тогда как однослойная пленка является поликристаллической. Для пленки, полученной предлагаемым способом, наличие рефлекса второго порядка (200) свидетельствует о (h00) преимущественной ориентации, а увеличение суммарной интенсивности пиков (100) и (200) говорит об улучшении ее кристаллического качества, что приводит к увеличению нелинейности и снижению диэлектрических потерь. Из фигуры 2 следует, что конденсаторная структура на основе сегнетоэлектрической пленки, полученной предлагаемым способом, имеет высокую диэлектрическую нелинейность, так как изменяет свою емкость в 2 раза под действием управляющего поля 50 В/мкм, при этом диэлектрические потери данного конденсатора не превышают 0,02 во всем интервале управляющих напряжений. Коммутационный фактор качества (введен О.Г. Вендиком и учитывает оптимальное соотношение между такими характеристиками, как диэлектрическая нелинейность и добротность конденсаторной структуры) подобной структуры составляет 2730, что больше известного метода (2035) при тех же управляющих напряженностях поля на 695 пунктов. Данное улучшение увеличивает диапазон применения конденсаторов на основе Ba1-xSrxTiO3 сегнетоэлектрических тонких пленок в мощной СВЧ технике.

Использование данного метода позволяет получить сегнетоэлектрическую пленку высокого структурного качества без включения полититанатных фаз и с минимальным количеством дефектов за счет отжига тонких слоев пленки, и реализовать высокую нелинейность конденсаторных структур на ее основе при низких диэлектрических потерях на сверхвысоких частотах для мощной СВЧ техники за счет использования материала подложки с высокой теплопроводностью.

Способ получения сегнетоэлектрических пленок BaSrTiO , включающий распыление мишени состава BaSrTiO при рабочей температуре подложки 700-900°С с периодическим прерыванием распыления мишени через промежуток времени, достаточный для создания сплошного сегнетоэлектрического слоя, на время, достаточное для отжига сплошного сегнетоэлектрического слоя, отличающийся тем, что в качестве материала подложки используют монокристаллический карбид кремния политипа 6Н, при этом во время каждого этапа отжига сплошного сегнетоэлектрического слоя температуру подложки повышают до температуры , не превышающей максимальную рабочую температуру .
Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
25.08.2017
№217.015.c91b

Способ получения сегнетоэлектрической пленки basrtio

Способ получения сегнетоэлектрической пленки BaSrTiO относится к технологиям получения тонких пленок и может быть использован при получении сегнетоэлектрических пленок BaSrTiO для сверхвысокочастотной техники. На первом этапе на сапфировой подложке формируют сплошной сегнетоэлектрический слой...
Тип: Изобретение
Номер охранного документа: 0002619365
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.da0c

Микрополосковый свч диплексор

Изобретение может быть использовано в радиоприемных и радиопередающих устройствах систем локации и связи, в том числе в аппаратуре потребителей спутниковых радионавигационных систем Glonass, GPS для разделения сигналов поддиапазонов L1, L2, L3, в пассивных когерентных локационных системах для...
Тип: Изобретение
Номер охранного документа: 0002623715
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.e2bc

Способ измерения сверхмалых угловых скоростей

Изобретение может быть использовано для измерения сверхмалых угловых скоростей в космическом пространстве. Способ измерения сверхмалых угловых скоростей путем возбуждения встречно-бегущих электромагнитных волн, отражения, детектирования их параметров и расчета величины действующей угловой...
Тип: Изобретение
Номер охранного документа: 0002626077
Дата охранного документа: 21.07.2017
17.08.2018
№218.016.7c64

Распылительный блок магнетрона для осаждения пленок твердых растворов fetio в диапазоне 0<x<0,6

Изобретение относится к распылительному блоку магнетрона для осаждения пленок твердых растворов FeTiO в диапазоне 0<х<0,6 на поверхности металлов, стекол или керамики. Упомянутый блок содержит мишень и охлаждающую пластину, причем мишень и охлаждающая пластина размещены в реактивной среде,...
Тип: Изобретение
Номер охранного документа: 0002664009
Дата охранного документа: 14.08.2018
04.11.2018
№218.016.9a5f

Способ получения сегнетоэлектрических пленок basr tio

Способ получения сегнетоэлектрической пленки BaSrTiO относится к технологиям получения тонких пленок и может быть использован при получении сегнетоэлектрических пленок BaSrTiO для сверхвысокочастотной техники. На первом этапе распыляют мишень состава BaSrTiO на сапфировую подложку с подслоем...
Тип: Изобретение
Номер охранного документа: 0002671614
Дата охранного документа: 02.11.2018
21.03.2019
№219.016.ebc6

Лазерная очистка документов на бумажной основе

Изобретение относится к способам обработки материалов с использованием лазерной техники и может быть использовано для очистки поверхности исторических документов на бумажной основе в процессе реставрации путем воздействия лазерного излучения на его поверхность, при котором из зоны обработки...
Тип: Изобретение
Номер охранного документа: 0002682423
Дата охранного документа: 19.03.2019
10.09.2019
№219.017.c982

Распыляемый блок магнетрона для осаждения пленок твердых растворов tiwo

Распыляемый блок магнетрона для осаждения пленок твердых растворов TiWO относится к устройствам, используемым в электронике, оптоэлектронике, архитектуре, автомобилестроении и др. Распыляемый блок магнетрона для осаждения пленки в виде твердого раствора TiWOсо стехиометрическим коэффициентом в...
Тип: Изобретение
Номер охранного документа: 0002699702
Дата охранного документа: 09.09.2019
09.10.2019
№219.017.d388

Способ вспучивания гидрослюды и устройство для его реализации

Изобретение относится к области производства гидропонных и строительных теплоизолирующих материалов и используется для вспучивания гидрослюд с помощью микроволновой энергии. Способ вспучивания основан на том, что на обрабатываемый материал воздействуют микроволновым излучением при его...
Тип: Изобретение
Номер охранного документа: 0002702230
Дата охранного документа: 07.10.2019
05.02.2020
№220.017.fde8

Электроакустический ненаправленный преобразователь

Изобретение относится к акустике, к акустическим преобразователям. Электроакустический ненаправленный преобразователь содержит пьезостержень, две одинаковые осесимметричные накладки, выполненные в виде сплошных конусов, соединенных армирующей стяжкой, и герметизирующие прокладки, установленные...
Тип: Изобретение
Номер охранного документа: 0002712924
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.fffb

Мобильная когерентная радиолокационная система

Мобильная когерентная радиолокационная система (МКРЛС) относится к области радиолокационных систем, в частности к многопозиционным радиолокационным станциям. Достигаемый технический результат - повышение помехозащищенности, обнаружение и оценка координат воздушных объектов, характеризующихся...
Тип: Изобретение
Номер охранного документа: 0002713219
Дата охранного документа: 04.02.2020
Showing 1-4 of 4 items.
25.08.2017
№217.015.c91b

Способ получения сегнетоэлектрической пленки basrtio

Способ получения сегнетоэлектрической пленки BaSrTiO относится к технологиям получения тонких пленок и может быть использован при получении сегнетоэлектрических пленок BaSrTiO для сверхвысокочастотной техники. На первом этапе на сапфировой подложке формируют сплошной сегнетоэлектрический слой...
Тип: Изобретение
Номер охранного документа: 0002619365
Дата охранного документа: 15.05.2017
04.11.2018
№218.016.9a5f

Способ получения сегнетоэлектрических пленок basr tio

Способ получения сегнетоэлектрической пленки BaSrTiO относится к технологиям получения тонких пленок и может быть использован при получении сегнетоэлектрических пленок BaSrTiO для сверхвысокочастотной техники. На первом этапе распыляют мишень состава BaSrTiO на сапфировую подложку с подслоем...
Тип: Изобретение
Номер охранного документа: 0002671614
Дата охранного документа: 02.11.2018
17.03.2019
№219.016.e284

Способ получения сегнетоэлектрических пленок твердых растворов

Изобретение относится к технологии получения тонких пленок для сверхвысокочастотных применений и может быть использовано для выбора оптимальных компонентных составов пленок и срезов монокристаллической подложки для достижения эпитаксиального роста. На первом этапе определяется материал...
Тип: Изобретение
Номер охранного документа: 0002682118
Дата охранного документа: 14.03.2019
23.05.2020
№220.018.2054

Способ получения мультиферроиков методом пропитки на основе ферромагнитной стекломатрицы

Изобретение относится к технологии получения оксидных стеклообразных композитов - мультиферроиков, сочетающих в себе ферромагнитные и электрические свойства, которые могут быть использованы в области свервысокочастотной электроники. Исходное железосодержащее силикатное стекло в системе...
Тип: Изобретение
Номер охранного документа: 0002721609
Дата охранного документа: 21.05.2020
+ добавить свой РИД