×
02.10.2019
219.017.cb34

Результат интеллектуальной деятельности: Установка для снятия механических характеристик гиромотора

Вид РИД

Изобретение

Аннотация: Изобретение относится к гироскопической технике и может быть использовано при проектировании герметичных газозаполняемых гирокамер гироузлов гироскопических приборов. Установка для снятия механических характеристик гиромотора содержит герметичную гирокамеру с установленным в ней гиромотором, состоящим из ротора и статора, одна боковая крышка которой, размещенная со стороны несимметричного рисунка, нанесенного на роторе, выполнена прозрачной, цилиндрический кожух гирокамеры выполнен сменным с переменным внутренним диаметром для изменения зазора между цилиндрической частью ротора и кожухом гирокамеры. В установку дополнительно введена импульсная лампа, подключенная к выходу управляемого импульсного генератора, вход которого соединен с первым USB портом компьютера, на второй USB порт которого подключен управляемый таймер, выдающий дискретное текущее время в моменты остановок несимметричного рисунка ротора, что соответствует дискретным значениям частоты вращения ротора, заданным в памяти компьютера с формированием для режима разгона инерционного момента определяющего разность моментов М(ω) - М(ω), где J - осевой момент инерции ротора; Δω - заданное приращение частоты вращения для режима разгона; Δt - вычисленное по показаниям таймера приращение времени; М(ω) электромагнитный момент гиромотора; М(ω) - момент сопротивления гиромотора; ω - частота вращения на данном шаге измерения; и с формированием для режима выбега гиромотора инерционного момента определяющего только момент сопротивления - М(ω) в функции частоты вращения, где Δω - заданное приращение частоты вращения для режима выбега; Δt - вычисленное по показаниям таймера приращение времени для режима выбега; при этом электромагнитный момент гиромотора равен Технический результат изобретения – повышение точности определения механических характеристик гирокамеры. 4 табл., 3 ил.

Изобретение относится к гироскопической технике и может быть использовано при проектировании герметичных газозаполняемых гирокамер гироузлов гироскопических приборов.

Известен негерметичный гироузел (гирокамера с гиромотором), гирокамера которого выполнена с вентиляционными окнами, с гиромотором обращенного типа марки ГМ-4, на котором нанесен несимметричный рисунок в виде спирали для динамической балансировки ротора гиромотора. Данный гироузел широко используется в различного типа гироскопических приборах, например в авиагоризонте АГД-1, центральной гироскопической вертикале ЦГВ различных модификаций (Авиагоризонт дистанционный. АГД-1. Техническое описание и инструкция по эксплуатации. М.: Машиностроение, 1972 г.).

Такая гирокамера не позволяет снимать характеристики гиромотора с анализом влияния ее основных характеристик (зазор между ободом ротора и кожухом гирокамеры, давление газа внутри ее) на механические характеристики гиромотора.

При проектировании гироузлов существенное значение имеют параметры гирокамеры: зазор между ротором и внутренней поверхностью гирокамеры и давление газа, заполняющего ее. Данные параметры существенным образом влияют на технические характеристики гиромотора: время разгона, время выбега, температуру перегрева, потребляемую мощность, которые в свою очередь определяются видом механических характеристик (зависимости электромагнитного момента и момента сопротивления от частоты вращения).

Известен герметичный гироузел, гирокамера которого выполнена герметичной и заполнена гелием или водородом под низким давлением. Конструктивно гирокамера состоит из двух непрозрачных крышек, неподвижно соединенных с цилиндрическим кожухом. Статор гиродвигателя жестко соединен с крышками гирокамеры, а на роторе нанесен несимметричный рисунок для динамической балансировки. На одной крышке впаяны три гермоввода для подвода трехфазного питания к гиромотору и трубка (штуцер) для заполнения гирокамеры газом. Подобные гироузлы широко применяются в авиационных приборах, например гироузел ГУА-2. (Малогабаритная гировертикаль МГВ-1С. Техническое описание и руководство по эксплуатации. М.: Машиностроение. - 1974 г., стр. 12-18).

Данный гироузел, принятый за прототип, имеет тот недостаток, что его гирокамера не позволяет снимать механические характеристики и исследовать влияние зазора между ободом ротора и внутренней поверхностью гирокамеры на технические характеристики гиромотора.

Техническим результатом изобретения является повышение точности определения механических характеристик.

Технический результат достигается тем, что в установке для снятия механических характеристик гиромотора содержащей герметичную гирокамеру, состоящую из двух крышек и цилиндрического кожуха, в которой установлен гиромотор с несимметричным рисунком, нанесенном на боковую поверхность ротора с заданным осевым моментом инерции, одна боковая крышка гирокамеры, размещенная со стороны несимметричного рисунка ротора, выполнена прозрачной, цилиндрический кожух выполнен сменным с переменным внутренним диаметром для изменения зазора между цилиндрической частью ротора и кожухом гирокамеры, а в установку дополнительно введена импульсная лампа, подключенная к выходу управляемого импульсного генератора, вход которого соединен с первым USB портом компьютера, на второй USB порт которого подключен управляемый таймер, выдающий дискретное текущее время в моменты остановок несимметричного рисунка ротора, что соответствует дискретным значениям частоты вращения ротора заданным в памяти компьютера с формированием для режима разгона инерционного момента

определяющего разность моментов Мэмi) - Мсi),

где J - осевой момент инерции ротора; Δωi - заданное приращение частоты вращения для режима разгона; Δti - вычисленное по показаниям таймера приращение времени; Мэмi) - электромагнитный момент гиромотора; Мсi) - момент сопротивления гиромотора; ωi - частота вращения на данном шаге измерения;

и с формированием для режима выбега гиромотора инерционного момента

определяющего только момент сопротивления (-Мсi)) в функции частоты вращения,

где Δωk - заданное приращение частоты вращения для режима выбега; Δtk - вычисленное по показаниям таймера приращение времени для режима выбега;

при этом электромагнитный момент гиромотора равен

Сущность изобретения поясняется чертежами, представленными на фиг. 1 - фиг. 3, где фиг. 1 - эскиз конструкции гирокамеры установки с функциональными блоками управления, фиг. 2 - вид на гиромотор и гирокамеру со стороны прозрачной крышки, а на фиг. 3 представлены графики моментов, полученные путем обработки измеренной информации в компьютере.

На рисунках приняты следующие обозначения:

1 - ротор гиромотора;

2 - ось статора гиромотора;

3 - крышка гирокамеры металлическая со штуцером;

4 - крышка гирокамеры прозрачная;

5 - кожух гирокамеры цилиндрический;

6 - гайки для крепления оси статора к крышкам;

7 - импульсная лампа;

8 - управляемый импульсный генератор;

9 - компьютер, например, notebook;

10 - управляемый таймер;

11 - основание, к которому крепится гирокамера;

12 - первый USB порт компьютера;

13 - второй USB порт компьютера;

14 - несимметричный рисунок (риска), который нанесен на крышку ротора;

15 - источник трехфазного питания (например, 36В, f=400 Гц);

16 - блок для откачивания воздуха из гирокамеры и заполнения ее газом, например гелием;

17 - винты крепления гирокамеры;

18 - уплотнительные прокладки;

dк - внутренний диаметр кожуха гирокамеры;

dp - внешний диаметр ротора гиромотора;

δ0=(dк-dр)/2 - зазор между ротором и внутренней поверхностью кожуха гирокамеры, может варьироваться за счет замены кожуха гирокамеры.

Установку можно представить в виде двух функциональных блоков: гирокамеры и системы измерения.

Гирокамера с гиромотором образует гироузел и конструктивно выполнены следующим образом (см. фиг. 1):

Гирокамера состоит из двух крышек 3 и 4, которые вставляются в цилиндрический кожух 5.

Крышка 3 выполняется произвольной формы с цилиндрическим посадочным буртиком. Крышка 4 изготавливается из прозрачного материала и имеет аналогичную форму. Гиромотор представляет синхронную или асинхронную трехфазную электрическую машину, построенную по обращенной схеме, т.е. ротор 1 охватывает статор, который устанавливается в гирокамеру посредством крепления оси статора 2 в отверстиях крышек 3 и 4. На боковую поверхность ротора 1 со стороны прозрачной крышки 4 нанесен несимметричный рисунок (риска) 14. На ось статора гиромотора навинчиваются гайки 6 и затягиваются, тем самым обеспечивается фиксация статора гиромотора, кожуха и крышек. Предварительно между крышками вставляется цилиндрический кожух 5, который занимает свое положение за счет буртиков в крышках 3 и 4. Соединения уплотняются прокладками 18 для обеспечения герметичности. Конец полой оси ротора, через которую выходят провода питания гиромотора, заливается компаундом для обеспечения герметичности. Провода обмоток статора подключаются к источнику трехфазного питания 15. Блок 16 по трубке подключается к штуцеру 19 в металлической крышке 3. Гирокамера крепится к основанию 11 с помощью винтов 17 в ножках крышек (крепление показано условно и может быть выполнено иначе).

При этом должна существовать возможность изменять зазор δ0 и давление газа внутри гирокамеры.

Установка является исследовательской. Для изменения зазора между ротором 1 и внутренней поверхностью кожуха 5 гирокамеры последний делается съемным, у которого dк может варьироваться в заданных пределах с целью изменения зазора δ0, влияющего существенным образом на момент аэродинамического сопротивления гиромотора.

Прежде чем подавать питание на гиромотор необходимо сначала с помощью блока 16 откачать воздух из гирокамеры, а затем под определенным давлением заполнить ее газом, например гелием.

Система измерения

Импульсная лампа 7, освещающая гиромотор через прозрачную крышку гирокамеры, питается от управляемого импульсного генератора 8, вход которого соединен с первым USB-портом 12 компьютера 9. При этом может задаваться частота вспышек в пересчете на частоту вращения в диапазоне от 100 об/мин до 30000 об/мин. На второй USB-порт 13 подключается управляемый таймер 10 для передачи дискретного времени в моменты остановок (замирания) несимметричного рисунка 14 ротора 1 (см. фиг. 2).

Режимы работы установки

Установка работает в трех режимах: определение номинальной частоты вращения, разгон гиромотора, выбег гиромотора.

Реализация всех режимов основывается на применении стробоскопического эффекта. При этом предполагаем, что в гирокамере установлен кожух 5 с заданным диаметром dк и она заполнена заданным газом под заданным давлением.

Стробоскопический способ снятия угловой скорости состоит в следующем: если за время между вспышками импульсной лампы укладывается целое число оборотов гиромотора, то ввиду инерционности зрения несимметричное изображение, нанесенное на роторе, покажется остановившимся. В это время оператор нажимает кнопу на таймере, и данные о времени достижения данной скорости заносятся в компьютер.

Определение номинальной скорости вращения гиромотора

На статор подается питание от трехфазного питания стабилизированной частоты и напряжения. Гиромотор начинает набирать обороты и достигает номинальной частоты вращения. После этого с помощью компьютера 9 изменяют частоту импульсного генератора 8 таким образом, чтобы несимметричный рисунок 14 ротора 1 остановился. Записывают данную частоту ni А далее, например, постепенно увеличивая частоту вспышек, замечают следующую подряд идущую частоту ni+1 «замирания» рисунка. Номинальные частота вращения nн и угловая скорость находятся по формулам:

Вычисленную номинальную скорость вращения заносят в таблицу 1.

Снятие характеристики разгона

В режиме измерения параметров разгона устройство работает следующим образом: задается частота вспышек лампы (шаг измерения) n (об/мин) или ; подается питание гиромотора; гиромотор будет набирать обороты от 0 до nн и при этом будет наблюдаться N остановок несимметричного рисунка в зависимости от заданного шага измерений; при остановке изображения несимметричного рисунка 14 ротора 1 оператор нажимает кнопку на таймере 10; это время ti заносится в память компьютера 9. Следующее время остановки также заносится в таблицу и т.д. Отметки времени будут означать достижение угловой скорости, равной

где i=1, 2, 3 … - порядковый номер отметки.

Для снятия последней точки быстро задают частоту вспышек импульсной лампы, соответствующую номинальной nн частоте вращения, при остановке несимметричного рисунка оператор нажимает кнопку таймера 10 и в компьютер записывается время разгона tp (см. Таблицу 1).

Снятие характеристики выбега

Схожим образом снимается и характеристика выбега: сначала выбирается частота вспышек лампы (желательно такая же, как при разгоне) только все будет происходить в обратном порядке. При этом частоты вращения ротора при остановках несимметричного рисунка будут такими же, как и при разгоне, а времена значительно отличаться (время выбега в гиромоторах всегда значительно больше времени разгона, что определяется спецификой его работы: временем готовности прибора и назначенным сроком службы). Чтобы записи в таблице 1 были корректными, для формирования массивов при выбеге индекс i заменен на индекс k.

Обработка результатов

Движение гиромотора во время разгона описывается уравнением:

где J - момент инерции ротора относительно оси вращения (известная величина для данного гиромотора); ω - угловая скорость вращения ротора; Мэм(ω) - электромагнитный момент гиромотора как функция от ω; Мс(ω) - момент сил сопротивления как функция от ω. Функция зависимости угловой скорости вращения от времени аппроксимируется до кусочно-линейного вида. Значение производной будет постоянным на линейном участке и будет определяться для точки середины линейного отрезка .

Тогда уравнение (1) для режима разгона будет определять инерционный момент:

определяющий разность пока неизвестных моментов Мэмi) - Мсi),

где Δωi - заданное приращение частоты вращения; Δti - вычисленное по показаниям таймера приращение времени для режима разгона; Мэмi) - электромагнитный момент гиромотора (пока неизвестный); Мсi) - момент сопротивления гиромотора (пока неизвестный); ωi - частота вращения на данном шаге измерения (задана в компьютере заранее).

Для режима выбега, когда питание гиромотора отключено (Мэмk)=0), уравнение (1) будет определять момент сопротивления в функции частоты вращения

где Δωk - заданное приращение частоты вращения для режима выбега (рационально принять Δωk=Δωi); Δtk - вычисленное по показаниям таймера приращение времени для режима выбега.

Электромагнитный момент при этом будет равен

Предлагаемое устройство можно применить в исследовательских целях для определения механических характеристик гиромотора (электромагнитного момента и момента сопротивления) при разном зазоре между ротором гиромотора и кожухом, а также при разном давлении газа в гирокамере.

В качестве примера приводятся данные эксперимента, представленные в таблице 2 для гиромотора ГМ-4, вращающегося в воздухе без гирокамеры.

Для нахождения механических характеристик и построения графиков моментов в компьютере формируется файл в виде таблицы 3, составленной в соответствии с формулами (2)-(4) для гиромотора ГМ-4 с моментом инерции ротора J=1,7⋅10-4 Нмс.

На основе таблицы 3 по точкам строятся графики моментов, представленные на фиг. 3. Для интерпретации полученных данных используется программная интерполяция моментов.

На графике (фиг. 3) изображены кривые момента сопротивления, суммы моментов при разгоне, а также их полиноминальные интерполяции. Точка пересечения интерполяционных линий (ωн на графике) отражает установившееся движение. По графику полиноминальной интерполяции определяется пусковой момент двигателя (случае данного эксперимента Мп ≈ 0,0018 Нм), критический (максимальный) момент (Мкр ≈ 0,0139 Нм).

Устройство не использует контактные методы измерения скорости вращения, что позволяет упростить конструкцию, избавиться от вредных моментов на роторе. Использование стробоскопического измерения скорости вращения, в отличие от электротехнических методов, повышает надежность установки и удешевляет изготовление.

При разработке гирокамеры для конкретного гиромотора с заданным диаметром ротора dp и моментом инерции J необходимо оптимальным образом подобрать внутренний диаметр dк кожуха гирокамеры, выбрать газ, ее заполняющий и его давление.

Обычно зазор между ротором и гирокамерой составляет доли миллиметра, задаваемый для конкретного гиромотора диаметром dк, а давление газа р (водорода или гелия) заключается в диапазоне десятков мм. рт. столба. Составив матрицу проведения эксперимента (таблица 4), можно правильно выбрать указанные параметры конструкции по косвенным характеристикам: механическим характеристикам, времени разгона и времени выбега.

По графикам, аналогичным представленным на фиг. 3, можно определить для каждого варианта эксперимента обобщенный показатель - критерий качества гирокамеры

который должен быть максимальным.

Таким образом, установка для снятия механических характеристик гиромотора позволяет экспериментально, качественно и бесконтактным способом определять механические характеристики гиромотора, расположенного в специальной герметичной гирокамере, с целью наилучшим образом определять ее конструктивные параметры: радиальный зазор между ротором и ее кожухом, а также давление газа, которым она заполняется. Полученные конструктивные параметры будут положены в основу проектирования рабочего гироузла для конкретного гироскопического прибора.

Источник поступления информации: Роспатент

Showing 101-110 of 127 items.
01.11.2019
№219.017.dd15

Синхронный электродвигатель с магнитной редукцией

Изобретение относится к электротехнике, а конкретно к синхронным двигателям с возбуждением от постоянных магнитов. Технический результат заключается в улучшении энергетических показателей синхронного электродвигателя. Синхронный электродвигатель с магнитной редукцией содержит корпус 1 и...
Тип: Изобретение
Номер охранного документа: 0002704491
Дата охранного документа: 29.10.2019
02.11.2019
№219.017.dd95

Устройство для увлажнения воздуха

Изобретение относится к технике вентиляции и кондиционирования воздуха и может быть использовано для увлажнения воздуха в помещениях различного назначения. Устройство для увлажнения воздуха, содержит корпус (1), поддон (3), наполненный водой и увлажнительный элемент (2), выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002704932
Дата охранного документа: 31.10.2019
04.11.2019
№219.017.de36

Поворотный электромагнит

Изобретение относится к области электротехники, к поворотным электромагнитам, и может быть использовано в электромеханизмах, в пневматических и гидравлических системах, где требуются малые перемещения и большие усилия, а также стабильность усилия по перемещению якоря. Технической результат...
Тип: Изобретение
Номер охранного документа: 0002704962
Дата охранного документа: 01.11.2019
08.11.2019
№219.017.df41

Магнитный редуктор

Изобретение относится к электротехнике, к бесконтактным магнитным редукторам, и может быть использовано в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках. Технический результат заключается в увеличении выходного момента. На корпусе 1...
Тип: Изобретение
Номер охранного документа: 0002705219
Дата охранного документа: 06.11.2019
15.11.2019
№219.017.e2b6

Злаковый батончик для питания работающих с соединениями свинца

Изобретение относится к пищевой промышленности. Состав злакового батончика включает следующие исходные ингредиенты: отруби овсяные, клетчатку пшеничную мелкую, муку из семян расторопши, ячменную муку, семена белого льна, плоды фенхеля, мякоть авокадо, порошок хлореллы, батат, плоды терна,...
Тип: Изобретение
Номер охранного документа: 0002706192
Дата охранного документа: 14.11.2019
15.11.2019
№219.017.e2c2

Злаковый батончик для питания работающих с вредными соединениями мышьяка и фосфора

Изобретение относится к пищевой промышленности. Предложен злаковый батончик, включающий следующие ингредиенты: клетчатку пшеничную мелкую, амарантовую и нутовую муку, семена черного тмина, плоды кардамона, измельченный корень лопуха, порошок спирулины, бразильский орех, корень пастернака,...
Тип: Изобретение
Номер охранного документа: 0002706159
Дата охранного документа: 14.11.2019
15.11.2019
№219.017.e2c8

Гаситель крутильных колебаний

Изобретение относится к машиностроению. Гаситель крутильных колебаний состоит из корпуса, крышки, маховика, расположенного внутри корпуса в среде жидкости с высокой вязкостью, и фланца с отверстиями для крепления гасителя. Маховик выполнен составным и расположен на основании с пазами,...
Тип: Изобретение
Номер охранного документа: 0002706131
Дата охранного документа: 14.11.2019
21.11.2019
№219.017.e477

Вентильный электропривод

Изобретение относится к области электротехники и может быть использовано в электромеханических системах на производстве, на транспорте и строительстве. Технический результат заключается в повышении точности регулирования частоты вращения. Вентильный электропривод имеет синхронный двигатель с...
Тип: Изобретение
Номер охранного документа: 0002706416
Дата охранного документа: 19.11.2019
26.11.2019
№219.017.e6b7

Турбореактивный двухконтурный двигатель

Турбореактивный двухконтурный двигатель содержит промежуточный теплообменник, первичный контур которого связан на выходе с последним каскадом компрессора. Последний каскад, включающий центробежный компрессор, камеру сгорания двигателя и центростремительную турбину, расположен вдоль оси...
Тип: Изобретение
Номер охранного документа: 0002707105
Дата охранного документа: 22.11.2019
01.12.2019
№219.017.e854

Магнитный редуктор

Изобретение относится к электротехнике, а именно к бесконтактным магнитным редукторам, и может быть использовано в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках. Технический результат заключается в возможности изменения передаточного...
Тип: Изобретение
Номер охранного документа: 0002707731
Дата охранного документа: 29.11.2019
Showing 11-15 of 15 items.
09.07.2020
№220.018.309d

Двухканальный датчик угловой скорости

Изобретение относится к гироскопическому приборостроению. Двухканальный датчик угловой скорости построен на базе гироскопа со сферической опорой. На основании закреплены статоры датчиков углов индуктивного типа по два на каждую ось измерения и статоры датчиков силы электромагнитного типа по два...
Тип: Изобретение
Номер охранного документа: 0002725880
Дата охранного документа: 07.07.2020
12.04.2023
№223.018.49c4

Тренажер для изучения гирополукомпаса

Изобретение относится к техническим средствам обучения операторов систем управления, а именно, к стендам-тренажерам и предназначено для изучения принципа построения гирополукомпаса. Тренажер содержит блок ввода учебной информации, узел индикации функционирования задатчиков, логический блок,...
Тип: Изобретение
Номер охранного документа: 0002761381
Дата охранного документа: 07.12.2021
24.05.2023
№223.018.6f64

Устройство управления креновой рамой курсовертикали

Устройство управления креновой рамой курсовертикали содержит гировертикаль с системами продольной и поперечной коррекций и индуктивным датчиком угла, установленным на оси подвеса внутренней рамы, при этом наружная рама, на оси подвеса которой закреплен датчик угла тангажа, кинематически...
Тип: Изобретение
Номер охранного документа: 0002796075
Дата охранного документа: 16.05.2023
04.06.2023
№223.018.76b4

Устройство создания нагрузочного момента двигателя постоянного тока

Изобретение относится к области электротехники, а именно к устройствам определения параметров электрических машин, и может найти применение при создании установок для идентификации параметров, например, моментных двигателей постоянного тока. Технический результат заключается в упрощении...
Тип: Изобретение
Номер охранного документа: 0002796640
Дата охранного документа: 29.05.2023
04.06.2023
№223.018.76b7

Способ определения параметров моментного двигателя постоянного тока

Изобретение относится к области электротехники. Технический результат - повышение точности определения параметров двигателя. Заявленный способ базируется на создании нагрузочного момента силами сухого трения фрикционным модулем, которым обжимают вал двигателя с регулируемым усилием, а величину...
Тип: Изобретение
Номер охранного документа: 0002796641
Дата охранного документа: 29.05.2023
+ добавить свой РИД