×
25.07.2019
219.017.b8ef

Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области измерительной техники и касается дистанционного способа обнаружения утечек нефтепроводов. Обнаружение утечек осуществляется путем облучения поверхности в ультрафиолетовом диапазоне на длине волны возбуждения и регистрации флуоресцентного излучения. Для зондирования земной поверхности регистрируют интенсивность флуоресцентного излучения I(Δλ), I(Δλ), I(Δλ) в трех широких спектральных диапазонах Δλ, Δλ, Δλ, выбранных по данным экспериментальных измерений. О наличии нефтяных загрязнений судят по выполнению соотношений: Для длины волны возбуждения 355 нм: Δλ=460…480 - 540…580 нм; Δλ=580…590 - 640…650 нм; Δλ=670…680 - 740…750 нм. Для длины волны возбуждения 266 нм: Δλ=400…420 - 470…520 нм; Δλ=520…530 - 590…600 нм; Δλ=670…680 - 740…750 нм. R, R, R - пороговые значения, выбранные в результате предварительных исследований спектров флуоресценции нефтей и спектров флуоресценции природных образований на земной поверхности. Технический результат заключается в увеличении дальности обнаружения. 9 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к измерительной технике и может быть использовано для оперативного обнаружения утечек нефтепроводов и разливов нефти на земной поверхности.

Уровень техники

Одними из наиболее перспективных классов датчиков для дистанционного оперативного обнаружения разливов нефти и нефтепродуктов являются лазерные флуорометры, работа которых основана на регистрации флуоресцентного излучения от исследуемой поверхности [1].

Известны способы обнаружения разливов нефти на поверхности воды [1-5], заключающиеся в том, что исследуемую поверхность облучают на длине волны возбуждения в ультрафиолетовом диапазоне, регистрируют флуоресцентное излучение от исследуемой поверхности и о наличии разливов нефти судят, либо проводя калибровку измеренных сигналов в некоторых спектральных диапазонах по сигналу флуоресценции окружающей чистой воды и потом используя величину калиброванных сигналов для нахождения аномалий в принятом сигнале флуоресценции [1-3], либо по результату корреляции измеренных спектров флуоресцентного излучения со спектрами излучения эталонных образцов [4], либо сравнивая интенсивность флуоресцентного излучения в двух узких спектральных диапазонах со специально выбранными центральными длинами волн [5].

Недостатком этих способов обнаружения нефтяных загрязнений является то, что они применимы только для разливов нефти на водной поверхности, и не позволяют проводить обнаружение нефтяных загрязнений на земной поверхности. Причиной этого является гораздо большая сложность задачи мониторинга разливов нефти для земной поверхности (по сравнению с аналогичной задачей для водной поверхности).

Основная причина резкого усложнения задачи обнаружения разливов нефти для земной поверхности связана с мешающим влиянием флуоресценции природных образований (в основном различных типов растительности, спектр флуоресценции которых может быть близок к спектру флуоресценции нефти).

Наиболее близким к предлагаемому способу является способ обнаружения нефтяных загрязнений на земной поверхности [6], заключающиеся в том, что поверхность облучают в ультрафиолетовом диапазоне на длине волны возбуждения, регистрируют интенсивность флуоресцентного излучения I(λ1), I(λ2), I(λ3) в трех узких спектральных диапазона с центрами на длинах волн λ1, λ2, λ3, выбранных по данным экспериментальных измерений из условия максимальной вероятности правильного обнаружения нефтяных загрязнений, а о наличии нефтяных загрязнений судят по выполнению соотношений:

и

где для длины волны возбуждения 266 нм λ1=331,5 нм, λ2=351,5 нм и λ3=417,5 нм, а пороговые значения равны: K1=3⋅10-4; K2=1,8; K3=1,75.

Недостатками способа обнаружения нефтяных загрязнений на земной поверхности [6] являются:

- небольшая дальность обнаружения, связанная с регистрацией флуоресцентного излучения в узких спектральных диапазонах (327,5-335,5 нм, 347,5-355,5 нм, 413,5-421,5 нм);

- использование только коротковолнового диапазона регистрации флуоресцентного излучения (с длинами волн короче 421,5 нм) и как следствие игнорирование наиболее характерного максимума флуоресценции растительности в диапазоне 680-740 нм.

Раскрытие изобретения

Избежать этого недостатка можно тем, что согласно дистанционному способу обнаружения нефтяных загрязнений, включающему облучение поверхности в ультрафиолетовом диапазоне на длине волны возбуждения и прием флуоресцентного излучения, для зондирования земной поверхности регистрируют интенсивность флуоресцентного излучения I(Δλ1), I(Δλ2), I(Δλ3) в трех широких спектральных диапазонах Δλ1, Δλ2, Δλ3, выбранных по данным экспериментальных измерений и о наличии нефтяных загрязнений судят по выполнению соотношений:

где

для длины волны возбуждения 355 нм: Δλ1=460…480 - 540…580 нм; Δλ2=580…590 - 640…650 нм; Δλ3=670…680 - 740…750 нм;

для длины волны возбуждения 266 нм: Δλ1=400…420 - 470…520 нм; Δλ2=520…530 - 590…600 нм; Δλ3=670…680 - 740…750 нм;

R1, R2, R3 - пороговые значения, выбранные в результате предварительных исследований спектров флуоресценции нефтей и спектров флуоресценции природных образований на земной поверхности.

Способ основан на анализе данных экспериментальных измерений спектров флуоресценции нефтей, разливов нефтей на земной поверхности, природных образований на земной поверхности и использует информацию о наиболее характерном максимуме флуоресценции растительности в диапазоне 680-740 нм и позволяет проводить дистанционное (с расстояний ~ 100 м и более) обнаружение разливов нефти на земной поверхности (отличать флуоресценцию природных образований от флуоресценции разливов нефти на земной поверхности).

Перечень фигур

На фиг. 1 схематично изображено устройство, реализующее предлагаемый способ.

На Фиг. 2-5 показан примеры спектров флуоресценции чистых нефтепродуктов, загрязненной нефтью земной поверхности, растительности, водных объектов, асфальта и почвы для длины волны возбуждения 355 нм.

На Фиг. 6-9 показан примеры спектров флуоресценции чистых нефтепродуктов, загрязненной нефтью земной поверхности, растительности, водных объектов, асфальта и почвы для длины волны возбуждения 266 нм.

Осуществление изобретения

Устройство содержит источник ультрафиолетового излучения 1, облучающий земную поверхность на длине волны возбуждения λB; фотоприемник 2, регистрирующий флуоресцентное излучение от земной поверхности в трех спектральных диапазонах (Δλ1, Δλ2, Δλ3); блок обработки 3, который по данным измерений I(Δλ1), I(Δλ2), I(Δλ3) проводит проверку выполнения соотношений (1).

Устройство работает следующим образом.

Источник ультрафиолетового излучения 1 (лазер с длиной волны возбуждения 266 или 355 нм) облучает исследуемую земную поверхность 4 на длине волны возбуждения λB (например, источник излучения 1 может находиться на авиационном носителе). Облучение земной поверхности осуществляют вертикально вниз (для увеличения полосы обзора возможно сканирование поперек направления полета носителя). Фотоприемник 2 регистрирует от исследуемой земной поверхности интенсивность флуоресцентного излучения I(Δλ1), I(Δλ2), I(Δλ3) в трех спектральных диапазонах Δλ1, Δλ2, Δλ3. Сигналы с фотоприемника 2 поступают в блок обработки 3, в который заранее введены пороговые соотношения (1) и значения порогов R1, R2, R3. В блоке обработки по данным измерений I(Δλ1), I(Δλ2), I(Δλ3) проводится проверка выполнения соотношений (1) и определяется наличие или отсутствие разливов нефти на земной поверхности. При облете исследуемого района результатом работы блока 3 является массив данных о наличии разливов нефти (карта разливов нефти).

Исходными данными для разработки способа обнаружения разливов нефти на земной поверхности являются измеренные спектры флуоресценции чистых нефтей и спектры флуоресценции природных образований на земной поверхности - прежде всего растительности и водных объектов [7-9].

На Фиг. 2-5 показаны пример спектров флуоресценции чистых нефтепродуктов, загрязненной нефтью земной поверхности растительности, водных объектов, асфальта и почвы для длины волны возбуждения флуоресценции 355 нм (здесь «пики» на рисунках на длине волны 532 нм соответствуют второй гармонике лазера подсвета, которую не всегда удавалось эффективно «подавить» во время эксперимента).

На Фиг. 2 показан пример спектра флуоресценции нефти 5 (с Московского НПЗ) и нефти 6, разлитой на почве (сразу после разлития). На Фиг. 3 - спектр флуоресценции зацветшего пруда - кривая 7. На Фиг. 4 - спектры флуоресценции растительности (8, 9 - мох (разные образцы), 10 - трава). На рисунке 5 - спектр флуоресценции асфальта 11, песчаной почвы 12, почвы из сада 13.

На Фиг. 6-9 показаны пример спектров флуоресценции чистых нефтепродуктов, загрязненной нефтью земной поверхности растительности, водных объектов, асфальта и почвы для длины волны возбуждения флуоресценции 266 нм.

На Фиг. 6 показан пример спектра флуоресценции нефти 14 (нефть Альметьевская) и нефти 15, разлитой на почве. На Фиг. 7 - спектр флуоресценции воды со взвесью глины - кривая 16. На Фиг. 8 - спектры флуоресценции растительности (листья деревьев) - кривая 17. На рисунке 9 - кривая 18 - спектр флуоресценции асфальта (флуоресценция от почв еще меньше, чем флуоресценция от асфальта).

Из рисунков (для длины волны возбуждения флуоресценции как 266 нм, так и 355 нм) видно, что интенсивность флуоресценции почв и асфальта существенно меньше интенсивность флуоресценции от нефти.

Однако, интенсивность флуоресценции водных объектов и растительности может быть сравнима по величине с интенсивность флуоресценции нефти, разлитой на почве.

При этом, спектральные области с максимальным значением флуоресценции нефтей, земной поверхности загрязненной нефтью, водных объектов и растительности сильно пересекаются. Причем, для длины волны возбуждения 355 нм они практически совпадают:

- интенсивность флуоресценции нефти имеет максимум в области 460-560 нм;

- интенсивность флуоресценции водных объектов имеет максимум в области 400-550 нм;

- интенсивность флуоресценции растительности тоже может иметь максимум в области 400-550 нм.

Однако спектры флуоресценции растительности имеют характерные максимумы в спектральном диапазоне 670-740 нм (см. Фиг. 4). Поэтому, флуоресцентный сигнал от разливов нефти можно отличить от флуоресцентного сигнала растительности, используя анализ формы спектров флуоресценции в спектральном диапазоне 670-740 нм.

Спектры флуоресценции водные объекты не имеют таких характерных особенностей, но их можно отличить (см. Фиг. 3) от спектров флуоресценции нефти по более быстрому спаданию спектра в спектральной области 480-640 нм.

Результаты анализа экспериментально полученных спектров флуоресценции показывают, что для задачи обнаружения разливов нефти на земной поверхности спектральные диапазоны регистрации флуоресцентного излучения могут быть следующие:

при длине волны возбуждения 355 нм

Δλ1=460…480 - 540…580 нм, Δλ2=580…590 - 640…650 нм,

Δλ3=670…680 - 740…750 нм.

при длине волны возбуждения 266 нм

Δλ1=400…420 - 470…520 нм, Δλ2=520…530 - 590…600 нм,

Δλ3=670…680 - 740…750 нм.

Параметрами, которые позволяют отличить разливы нефти на земной поверхности от растительности и водных объектов являются отношение интенсивности флуоресценции I(Δλ1) к I(Δλ2) и отношение интенсивности флуоресценции I(Δλ3) к I(Δλ2):

- отношение для нефти, разлитой на земной поверхности много больше, чем соответствующее отношение для водных объектов (спектр флуоресценции нефти в спектральной области 480-640 нм спадает существенно медленнее, чем спектр флуоресценции водных объектов);

- отношение для нефти, разлитой на земной поверхности много больше, чем соответствующее отношение для растительности (спектр флуоресценции нефти не имеет максимума в спектральном диапазоне 670-740 нм).

Процедура проверки наличия разливов нефти на земной поверхности должна состоять из двух этапов:

1. Первый этап.

На этом этапе, используя различия в величине интенсивности флуоресценции в спектральном диапазоне Δλ1 разливов нефти, водных объектов, растительности и почв, относят исследуемый элемент поверхности к случаю «не почвы» (разлив нефти или водный объект или растительность) или к случаю «почвы».

2. Второй этап.

На этом этапе, используя различия в спектрах флуоресценции разливов нефти на земной поверхности, водных объектов и растительности, относят исследуемый элемент поверхности к случаю «разлив нефти» или к случаю «природное образование».

Этапы процедуры проверки наличия нефтяных загрязнений на земной поверхности имеют вид:

1 этап. Сравнивается интенсивность флуоресценции в спектральном диапазоне Δλ1 с пороговым значением:

I(Δλ1)≤R1 для «почв»; I(Δλ1)>R1 для «не почв»

2 этап. Для анализа формы спектров флуоресценции используются два классифицирующих признака - и

и для случая «разлив нефти»,

или для случая «природное образование».

Здесь R1, R2, R3 - пороговые значения, выбранные в результате предварительных исследований спектров флуоресценции нефтей и спектров флуоресценции природных образований на земной поверхности для выбранной длины волны возбуждения.

Предлагаемый способ дистанционного обнаружения нефтяных загрязнений, основанный на регистрации флуоресцентного излучения в трех спектральных диапазонах, выбранных по данным экспериментальных измерений, и использует информацию о наиболее характерном максимуме флуоресценции растительности в диапазоне 680-740 нм и позволяет проводить дистанционное (с расстояний ~ 100 м и более) обнаружение разливов нефти на земной поверхности.

Источники информации

1. Межерис Р. Лазерное дистанционное зондирование. - М.: Мир. 1987, - 550 с.

2. Patent US 7227139. System and method for optical detection of petroleum and other products in an environment. Date of Patent Jun. 5, 2007. Int. CI. G01N 21/64.

3. Заявка PCT WO 93/25891. Oil spill detection system. International Publication Date 23.12.1993. International Patent Classification G01N 21/64.

4. Патент RU 2233438. Способ дистанционного обнаружения и идентификации объектов органического происхождения. Дата действия патента 26.08.2003. МПК G01N 21/64.

5. Патент RU 2440566. Способ дистанционного обнаружения нефтяных загрязнений на поверхности воды. Дата действия патента 27.07.10. МПК G01N 21/55.

6. Патент RU 2539784. Способ дистанционного обнаружения нефтяных загрязнений на земной поверхности. Дата действия патента 10.12.14. МПК G01N 21/55.

7. Федотов Ю.В, Матросова О.А., Белов М.Л., Городничев В.А., Козинцев В.И. Экспериментальные исследования спектров флуоресценции природных образования и нефтяных загрязнений // Наука и образование. 2011. N11. URL: http://technomag.edu.ru/doc/256187.html.

8. Федотов Ю.В, Матросова О.А., Белов М.Л., Городничев В.А., Козинцев В.И. Метод обнаружения нефтяных загрязнений на земной поверхности, основанный на регистрации флуоресцентного излучения в трех узких спектральных диапазонах // Оптика атмосферы и океана. 2013. Т. 26, N3. C. 208-212.

9. Белов М.Л., Федотов Ю.В, Кравцов Д.А., Городничев В.А. Лазерный флуориметр на безопасной для глаз длине волны для неконтактного контроля экологического состояния объектов природной среды // Машиностроение и компьютерные технологии. 2018. №05. С. 30-42.


Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Способ дистанционного обнаружения утечек нефтепроводов на земной поверхности
Источник поступления информации: Роспатент

Showing 51-60 of 68 items.
14.06.2019
№219.017.8306

Способ определения бактериального эндотоксина в биологических жидкостях

Изобретение относится к области клинической лабораторной диагностики и представляет собой способ определения бактериального эндотоксина (БЭ) в плазме крови и моче, отличающийся тем, что предварительная подготовка образцов плазмы крови включает разбавление образцов плазмы крови физиологическим...
Тип: Изобретение
Номер охранного документа: 0002691413
Дата охранного документа: 13.06.2019
03.07.2019
№219.017.a497

Устройство формирования высокоскоростного удлиненного оперенного элемента, в том числе самозакручивающегося

Изобретение относится к оборонной технике и может быть использовано в различных кумулятивных боеприпасах (КБП), предназначенных для поражения целей высокоскоростными поражающими элементами (ПЭ). Устройство состоит из взрывателя, корпуса с заключенным в нем зарядом взрывчатого вещества с...
Тип: Изобретение
Номер охранного документа: 0002693207
Дата охранного документа: 01.07.2019
04.07.2019
№219.017.a4fc

Способ установки элементов в конструкции

Заявленное решение относится к мебельному производству и деревянному домостроению. Технический результат заключается в упрощении процесса установки. Способ установки элементов в конструкции включает размещение вертикальных и/или горизонтальных составляющих конструкции, в вертикальных и/или...
Тип: Изобретение
Номер охранного документа: 0002693265
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a5f3

Устройство для испытания трубчатых образцов из проницаемых материалов при комбинированном нагружении осевой силой и внешним давлением

Изобретение относится к области исследования прочностных свойств твердых материалов путем создания в них широкого диапазона напряжений, конкретно к испытаниям трубчатых образцов при действии внешнего давления и осевой растягивающей или сжимающей нагрузки. Устройство состоит из камеры высокого...
Тип: Изобретение
Номер охранного документа: 0002693547
Дата охранного документа: 03.07.2019
19.07.2019
№219.017.b604

Способ ковалентной иммобилизации лизоцима для последующего применения иммобилизованного лизоцима для снижения бактериальной обсемененности биологических жидкостей

Изобретение относится к технологиям производства и использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: расширение ассортимента способов...
Тип: Изобретение
Номер охранного документа: 0002694883
Дата охранного документа: 17.07.2019
23.07.2019
№219.017.b6ca

Волоконно-оптическое устройство регистрации вибрационных воздействий с разделением контролируемых участков

Изобретение относится к метрологии, в частности к рефлектометрии. Волоконно-оптическое устройство регистрации вибрационных воздействий содержит последовательно соединенные высокостабильный узкополосный источник излучения, усилитель оптического сигнала, управляемый драйвером акустооптический...
Тип: Изобретение
Номер охранного документа: 0002695098
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6db

Многоканальное волоконно-оптическое устройство регистрации вибрационных воздействий с одним приёмным модулем регистрации

Изобретение относится к волоконно-оптическим сенсорным системам. Многоканальное волоконно-оптическое устройство регистрации вибрационных воздействий включает в себя: последовательно соединенные высокостабильный узкополосный источник излучения; усилитель оптического сигнала (бустер); управляемый...
Тип: Изобретение
Номер охранного документа: 0002695058
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6ea

Способ измерения ионосферных предвестников землетрясений

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: регистрируют волны плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов. Причем регистрацию...
Тип: Изобретение
Номер охранного документа: 0002695080
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6ef

Способ измерений содержания парниковых газов в атмосфере

Изобретение относится к области экологии, к дистанционным методам мониторинга природных сред. Способ включает зондирование подстилающей поверхности спектрометром с широким полем зрения во всем интервале полос переизлучений газовых молекул Лаймана, Бальмара, Пашена, определение средневзвешенного...
Тип: Изобретение
Номер охранного документа: 0002695086
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b771

Способ очистки лесосеки после сортиментных лесозаготовок

Изобретение относится к способу очистки лесосеки после сортиментных лесозаготовок и может быть использовано в лесной промышленности на лесозаготовках. Лесная машина 7 перемещается по линии движения 4 перпендикулярно волокам. Линия движения 4 включает отрезки 5 равной длины, большей, чем диаметр...
Тип: Изобретение
Номер охранного документа: 0002694968
Дата охранного документа: 18.07.2019
Showing 11-19 of 19 items.
10.05.2018
№218.016.387a

Дистанционный способ обнаружения стрессовых состояний растений

Изобретение относится к измерительной технике и касается дистанционного способа обнаружения участков растительности в стрессовом состоянии путем лазерного возбуждения флуоресценции хлорофилла растения и регистрации интенсивности флуоресценции. Для зондирования растительности используют каналы...
Тип: Изобретение
Номер охранного документа: 0002646937
Дата охранного документа: 12.03.2018
25.08.2018
№218.016.7f63

Дистанционный способ обнаружения растительности, находящейся в неблагоприятных для развития условиях

Изобретение относится к области измерительной техники и касается дистанционного способа обнаружения участков растительности, находящейся в неблагоприятных для развития условиях. Способ включает в себя лазерное облучение растений и регистрацию отраженного излучения. Облучение и регистрацию...
Тип: Изобретение
Номер охранного документа: 0002664757
Дата охранного документа: 22.08.2018
22.09.2018
№218.016.8938

Способ и устройство дифференциального определения радиуса кривизны крупногабаритных оптических деталей с использованием датчика волнового фронта

Способ содержит установку начального положения для эталонного зеркала 1.2 c известным радиусом кривизны R , соответствующего совпадению его центра кривизны с точкой фокуса оптической насадки 2 на оптической оси единого блока, включающего оптическую насадку 2, оптическую систему 3 и датчик...
Тип: Изобретение
Номер охранного документа: 0002667323
Дата охранного документа: 18.09.2018
01.03.2019
№219.016.d048

Способ дистанционного обнаружения нефтяных загрязнений на поверхности воды

Изобретение относится к измерительной технике. Способ включает облучение поверхности воды в ультрафиолетовом диапазоне на длине волны возбуждения λ и регистрацию интенсивности флуоресцентного излучения I(λ) и I(λ) от исследуемой водной поверхности в двух узких спектральных диапазонах с центрами...
Тип: Изобретение
Номер охранного документа: 0002440566
Дата охранного документа: 20.01.2012
09.06.2019
№219.017.7b15

Устройство для измерения деформаций на основе квазираспределенных волоконно-оптических датчиков на брэгговских решетках

Устройство содержит широкополосный суперлюминесцентный диод (СЛД), излучение которого через перестраиваемый спектральный фильтр поступает на первый полюс четырехполюсного разветвителя и через его четвертый полюс - на первый полюс трехполюсного разветвителя, второй полюс которого соединен с...
Тип: Изобретение
Номер охранного документа: 0002377497
Дата охранного документа: 27.12.2009
23.07.2019
№219.017.b71e

Способ определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием методом оптической дальнометрии

Изобретение предназначено для определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием при контроле и настройке оптических элементов. Способ измерения радиуса кривизны оптических деталей больших размеров с центральным осевым отверстием содержит...
Тип: Изобретение
Номер охранного документа: 0002695085
Дата охранного документа: 19.07.2019
16.01.2020
№220.017.f52c

Устройство с разнесенными ветвями для измерения радиусов кривизн вогнутых оптических деталей

Изобретение относится к оптическим измерительным системам. Устройство измерения радиуса кривизны вогнутой оптической сферической поверхности c разнесенными ветвями содержит точечный источник, оптическую систему измерительной части, включающую светоделительный элемент, датчик волнового фронта. В...
Тип: Изобретение
Номер охранного документа: 0002710976
Дата охранного документа: 14.01.2020
02.03.2020
№220.018.0803

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с датчиками волнового фронта (двф)

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта содержит получение радиуса ближайшей сферы R и волнового фронта сферической формы W(ρ). В положении начальной установки для измеряемой асферической оптической детали,...
Тип: Изобретение
Номер охранного документа: 0002715434
Дата охранного документа: 28.02.2020
24.04.2020
№220.018.188b

Дистанционный способ выделения участков леса с преобладанием хвойных или лиственных пород деревьев в летнее время с авиационного носителя

Изобретение относится к лесному хозяйству и может найти применение при дистанционном мониторинге лесных массивов на обширных территориях. Дистанционный способ выделения участков леса с преобладанием хвойных или лиственных пород деревьев включает дистанционную регистрацию полей яркости лесной...
Тип: Изобретение
Номер охранного документа: 0002719731
Дата охранного документа: 22.04.2020
+ добавить свой РИД