×
23.07.2019
219.017.b6ea

Результат интеллектуальной деятельности: Способ измерения ионосферных предвестников землетрясений

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: регистрируют волны плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов. Причем регистрацию осуществляют во взаимно ортогональных плотностях в двух разнесенных на измерительной базе пунктах. Обрабатывают зарегистрированные выборки сигналов. Рассчитывают направляющие косинусов вектора волн плотности электронной концентрации каждого пункта. Отождествляют проекцию точки пересечения направляющих на земную поверхность с гипоцентром очага землетрясения. Используя зарегистрированные выборки сигналов, рассчитывают время удара и ожидаемую магнитуду землетрясения. Технический результат: повышение чувствительности способа, увеличение интервала времени упреждающего прогноза сейсмического удара. 5 ил.

Изобретение относится к радиофизике и может найти применение в национальных системах сейсмологического контроля при мониторинге природных сред для прогнозирования землетрясений.

Предсказание землетрясений базируется на измерениях различных геофизических полей, изменяющих свои характеристики в потенциальном поле механических напряжений земной коры в области подготавливаемого землетрясения. Одним из чувствительных признаков - предвестников землетрясения являются электродинамические процессы, протекающие в околоземной плазме (ионосфере).

По параметрам переходного колебательного процесса (как вариации плотности электронной концентрации в слоях ионосферы) определяют гипоцентр проекции очага на ионосферу и характеристики ожидаемого сейсмического удара [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 64-65, 109, 127-129, 138].

Известен «Способ предсказания землетрясений» путем измерения волн плотности электронной концентрации при полете космического аппарата непосредственно на высотах соответствующих слоев ионосферы, Патент Ru №2 205 430, 2003 г - аналог. В способе аналога регистрируют волновой процесс, возникающий в среде накануне удара, вычисляют фазовый центр волнового процесса и его период, рассчитывают характеристики предстоящего удара по их зависимостям от периода, дополнительно получают серию регистрограмм дискретных отсчетов A(Li) электростатического потенциала внешней поверхности космических аппаратов при их полете по орбитам Li непосредственно через область ионосферного образования, находят фазовый центр процесса как точку пересечения траверз восходящих и нисходящих витков космических аппаратов, проведенных к участкам регистрограмм, где допплеровская частота измеряемого процесса равна нулю, отождествляют эту точку с проекцией гипоцентра очага на ионосферу, вычисляют период Т, магнитуду М и время ожидаемого удара tx из соотношений:

где ΔL=L2-L1 - разница пространственных периодов двух симметричных относительно траверзы полуволн регистрограммы;

- отношение пространственных периодов двух симметричных, относительно траверзы, полуволн регистрограммы,

v - скорость акустических волн в ионосфере;

Vr - радиальная скорость движения измерителя относительно фазового центра волнового процесса.

К недостаткам аналога следует отнести:

- все существующие космические аппараты имеют внутренние источники питания, «заземленные» на корпус. Создание дополнительного внешнего корпуса (в качестве обкладки конденсатора) изолированного от «заземленного» представляет технические трудности;

- невысокая чувствительность измерений из-за малой емкости создаваемого конденсатора.

Известны дистанционные методы измерений плотности электронной концентрации ионосферы N [1/м3], путем ее зондирования на частоте ниже критической [см., например, «Космонавтика», Энциклопедия, М, Изд. Сов. энциклопедия, 1986 г., стр. 161, Ионозоид] - ближайший аналог.

В ближайшем аналоге задающий генератор плавно изменяет частоту настройки приемно-передающего устройства в диапазоне от 1 до 20 МГц для получения амплитудно-частотной характеристики (АЧХ) отраженного от ионосферы сигнала. Ионозоид включает импульсный ВЧ передатчик, приемник, электронно-лучевой индикатор, задающий генератор передатчика является гетеродином приемника, чем достигается сопряжение и синхронизация приемника и передатчика. Высоту до отражающей поверхности ионосферы определяют по времени запаздывания отраженного сигнала. Плотность электронной концентрации слоя определяют пересчетом из АЧХ значений критической частоты и времени запаздывания.

Недостатками ближайшего аналога являются:

- невозможность по параметрам регистрируемого сигнала рассчитать ионосферные предвестники землетрясения;

- для пеленгации гипоцентра очага землетрясения необходимо измерять волновой процесс в двух, взаимно ортогональных, плоскостях.

Задача, решаемая заявленным способом, состоит в измерении динамики волнового процесса плотности электронной концентрации, реализуемой путем пеленгации фазового центра волн двумя пунктами с диаграммами направленности антенн в двух взаимно-ортогональных плоскостях на каждом пункте.

Технический результат достигается тем, что способ измерений ионосферных предвестников землетрясений включает регистрацию волн плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов во взаимно ортогональных плоскостях Ax(t), Ay(t) в двух, разнесенных на измерительной базе пунктах посредством антенн, с диаграммами направленности каждого из пунктов в ортогональных плоскостях, оси симметрии диаграмм направленности антенн по координате (х) ориентируют по направлению базы, обработку зарегистрированных выборок измерений сигналов, расчет направляющих косинусов вектора волн плотности электронной концентрации каждого пункта:

отождествление координат гипоцентра очага как проекции точки пересечения направляющих на земную поверхность, по изменениям амплитуд выборок измерений на интервале Δt вычисляют постоянную времени Т сейсмического процесса как

рассчитывают время удара tу=4,7T и ожидаемую магнитуду как

где А0 - установившееся значение амплитуды сигнала предвестника, равное

Δt=(t2-t1)=(t3-t2) интервал времени между отсчетами измерений A1, А2, A3.

Изобретение поясняется чертежами, где:

фиг. 1 - плотность электронной концентрации в слоях ионосферы;

фиг. 2 - суточный ход критической частоты (плотности электронной концентрации) в слое F2 а) невозмущенном состоянии, б) возмущенном, накануне сейсмического удара;

фиг. 3 - пеленгация фазового центра волн плотности электронной концентрации двумя пунктами, разнесенными на измерительной базе;

фиг. 4 - функция изменения амплитуды регистрируемого сигнала во времени;

фиг. 5 - функциональная схема устройства, реализующего способ.

Техническая сущность изобретения заключается в следующем. Накануне сейсмического удара в атмосфере происходит раскачка очага землетрясения [см., например, Патент Ru №2170446 кл. G.01.V, 9/00, 2001 г.] В приповерхностном слое атмосферы возникают акустолитосферные волны, которые, при их распространении вверх, служат «спусковым крючком» для возникновения плазменных волн электронной концентрации в слоях ионосферы. Исходная электронная концентрация N[1/m3] в слоях ионосферы иллюстрируется фиг. 1 [см., например, «Космонавтика», Энциклопедия, под ред. В.П. Глушко, М, Сов. энциклопедия, 1985 г., стр. 143]. Зарегистрированные в ряде экспериментов волны плотности электронной концентрации в ионосфере иллюстрируются графиками фиг. 2 [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 109]. За несколько часов до сейсмического удара, изменение критической частоты слоя F2 из-за изменения плотности электронной концентрации может достигать 40…50%. Для измерения пространственных волн в ионосфере предлагается осуществлять ее зондирование с двух, разнесенных на измерительной базе, пунктов. Признаками предвестниками землетрясения являются: гипоцентр (координаты) очага, ожидаемое время сейсмического удара (ty) и ожидаемая магнитуда (М).

Пеленгация фазового центра ионосферных волн иллюстрируется фиг. 3. Фазовый центр ионосферных волн находят как точку пересечения радиус-векторов. Положение радиус-векторов в пространстве полностью определяется косинус-направляющими. В прямоугольной системе координат, задаваемой ортогональными парами измерителей (13, 14), (15, 16), (17, 18), (19, 20) косинус-направляющая вектора равна отношению его проекции (Пр) на данную ось к длине вектора. Длины векторов R1, R2 фиг. 3 находятся как корень квадратный из суммы проекций:

Проекции радиус-векторов пропорциональны сигналам на входе приемников в ортогональных плоскостях х, у.

Кроме направления в пространстве, ионосферная волна характеризуется периодом (Т) и амплитудой A(t), которая изменяется во времени, фиг. 2. Из математики известно [см., например, Пискунов Н.С., «Дифференциальное и интегральное исчисления для ВТУЗов», учебник т. 1, 5-е издание, М, Наука, 1964 г., стр. 457-458], что сама функция и скорость ее изменения связаны дифференциальным уравнением первого порядка, общим решением которого является экспонента. Экспоненциальная зависимость обладает тем свойством, что по трем ее дискретным отсчетам может быть восстановлена вся функция и определен предел А0, к которому стремится экспонента:

Где A1, А2, А3 - амплитуды сигналов в моменты измерений (отсчетов) соответственно t1, t2, t3 В свою очередь, постоянную времени процесса Т определяют из соотношения:

Δt - интервал времени наблюдений между отсчетами A1, А2.

По постоянной времени переходного процесса прогнозируют характеристики ожидаемого сейсмического удара. Время удара - это интервал времени, за который амплитуда сигнала, с вероятностью близкой к единице, достигает установившегося значения А0, для экспоненты tуст=4,7T (с вероятностью 0,99). Магнитуду удара определяют из соотношения Гутенберга-Рихтера: [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 10, стр. 13].

Пример реализации способа

Заявленный способ может быть реализован по схеме фиг. 5. Функциональная схема фиг. 5 содержит два пункта измерителей 1, 2, разнесенных в пространстве на расстояние измерительной базы 3. На каждом из пунктов установлено по две антенны 4, 5 и 6, 7 с диаграммами направленности во взаимно ортогональных плоскостях, оси диаграмм направленности антенн 5, 7 ориентируют по направленности базы 3, с подключенными к антеннам приемниками 8, 9 и 10, 11 соответственно. Гетеродины приемников синхронизированы от единого передатчика 12, работающего в импульсном режиме, подключенного к антенне зондирования ионосферы 4. Выход каждого из приемников подключен к тракту обработки из последовательно включенных порогового устройства и аналогово-цифрового преобразователя соответственно (13, 14), (15, 16), (17, 18) и (19, 20). Все тракты обработки подключены к канальному коммутатору 21, имеющему выход на вход компьютера 22 обработки результатов измерений в составе элементов: процессора 23, оперативно-запоминающего устройства 24, винчестера 25, дисплея 26, принтера 27, клавиатуры 28. В компьютер закладывают программу обработки и программу синхронизации работы элементов измерителей, которую пересылают в программируемую схему выборки измерений 29. Результаты обработки выводят на сайт 30 сети Интернет для передачи потребителям.

Взаимодействие элементов устройства при прогнозировании землетрясений состоит в следующем. Известно «Явление раскачки очага землетрясения перед сейсмическим ударом», Научное открытие №365, 2008 г. [см., Потоцкий В.В., Бюллетень, Научные открытия, РАЕН, М, СПб, 2009 г., стр. 66-68].

Раскачка очага землетрясения сопровождается распространением от гипоцентра очага литосферных волн, которые через механизм передачи в виде акустических волн, возбуждают волны плотности электронной концентрации в ионосфере, как это иллюстрируется графиками фиг. 2.

Применительно к одной из возможных реализаций (фиг. 2, 4) установившееся значение сигнала А0 (в шкале квантования 0…255 уровней) составило величину ~250. Значения A1 и А2 в интервале наблюдений Δt=t2-t1=8 час, соответствовали A1=125, А2=175. Откуда постоянная времени

Ожидаемое время удара ty=4,7T=70 час = 2,9 суток.

Ожидаемая магнитуда удара М≈7,1 балла

Направляющие косинусы гипоцентра очага землетрясения (фиг. 3) для первого пункта α=44°, для второго пункта β=62°.

Все элементы устройства представляют существующие технические разработки и средства аналогов. В устройстве использованы новые, по отношению к аналогам, элементы измерительной аппаратуры фирмы Bruel & Kjair, ENDEVCO (Дания) следующих моделей: канальный коммутатор, пороговое устройство, аналогово-цифровой преобразователь - многофункциональный блок, модель 3560-L. «Антенна для зондирования ионосферы», Патент Ru №2504054, 2014 г., широкополосная, работающая во всей полосе критических частот ионосферы, из двух, скрещенных в ортогональных плоскостях ромбов, подвешенных на опорной мачте из композитного материала, высотой 32 м, создающей геометрию главной диагонали ромбов, работающих в режиме бегущей волны.

Эффективность способа характеризуется высокой чувствительностью, поскольку отраженный сигнал собирается с большой площади зондируемого участка ионосферы и, соответственно, увеличением интервала времени упреждающего прогноза сейсмического удара.


Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Источник поступления информации: Роспатент

Showing 1-10 of 68 items.
26.08.2017
№217.015.d867

Способ выбора вида пород для плана озеленения

Способ может быть использован в лесном хозяйстве, при озеленении территорий городских поселений, в садово-парковом хозяйстве. Способ характеризуется тем, что осуществляют измерения совокупности показателей, определяющих объем продуцирующей кислород биомассы каждого вида для участков...
Тип: Изобретение
Номер охранного документа: 0002622708
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d8a6

Способ изготовления древесноволокнистой плиты

Изобретение относится к деревообрабатывающей промышленности, в частности к изготовлению древесноволокнистых плит. Выполняют размол древесной щепы. В древесноволокнистую массу вводят технологические добавки. Выполняют отлив ковра, обезвоживание и горячее прессование. В процессе размола в...
Тип: Изобретение
Номер охранного документа: 0002622706
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.da14

Устройство и способ определения радиуса кривизны крупногабаритных оптических деталей на основе датчика волнового фронта

Заявленное изобретение относится к разработкам в области измерительных оптических систем и может применяться в системах контроля качества и других областях оптической промышленности. Заявленное устройство определения радиуса кривизны крупногабаритной оптической детали на основе датчика...
Тип: Изобретение
Номер охранного документа: 0002623702
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.dc0a

Способ оценки биологической активности состава и концентрации препаратов, рекомендуемых для повышения посевных качеств семян зерновых культур

Изобретение относится к сельскому хозяйству. Одинаковые навески сравниваемых семян обрабатывают препаратами-стимуляторами, помещают в емкости, приводят семена в контакт с водой, выдерживают семена в этих растворах, определяют и сравнивают количество выделившейся при прорастании семян...
Тип: Изобретение
Номер охранного документа: 0002624284
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e993

Электрогидравлическая форсунка с возможностью формирования закона подачи

Изобретение может быть использовано в аккумуляторных системах топливоподачи с электронным управлением для двигателей внутреннего сгорания (ДВС). Предложена электрогидравлическая форсунка (ЭГФ) с возможностью формирования закона подачи топлива, содержащая корпус 2 с размещенными в нем...
Тип: Изобретение
Номер охранного документа: 0002627741
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.ea8d

Способ визуализации и квантификации эффекта памяти формы древесины и древесных материалов

Изобретение относится к области деревообработки, визуализации и определения показателей эффекта памяти формы древесины и древесных материалов. Способ включает помещение образца древесины в емкость с водой, выполненную с возможностью ее подогрева, при этом образец древесины устанавливают в...
Тип: Изобретение
Номер охранного документа: 0002627852
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eac4

Сверхчувствительная гидроакустическая антенна на основе волоконно-оптических гидрофонов, использующая многоэлементные приёмники

Изобретение относится к метрологии, в частности к волоконно-оптическим сенсорным системам. Антенна состоит из двух частей: вневодной части и подводной части, включающей в себя последовательно соединенные лазер, волоконно-оптический разветвитель 1×N излучения - на N каналов, делящий энергию...
Тип: Изобретение
Номер охранного документа: 0002627966
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f13a

Способ активации углеродного материала из вискозных волокон для получения электродов суперконденсаторов

Изобретение относится к области электротехники, а именно к активации углеродного материала из вискозных волокон для изготовления электродов электролитических суперконденсаторов. Сущность изобретения заключается в том, что способ содержит две стадии, на первой из которых осуществляют пропитку...
Тип: Изобретение
Номер охранного документа: 0002638935
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f856

Устройство для перемешивания концентрата тромбоцитов или тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники и может быть использовано на станциях переливания крови, в больницах, клиниках и научно-исследовательских медицинских учреждениях. Устройство для перемешивания концентрата тромбоцитов или тромбоцитосодержащих трансфузионных сред содержит...
Тип: Изобретение
Номер охранного документа: 0002639827
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f928

Автономное термостатируемое устройство для хранения концентрата тромбоцитов или тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники и может быть использовано на станциях переливания крови, в больницах, клиниках и научно-исследовательских медицинских учреждениях. Автономное термостатируемое устройство для хранения концентрата тромбоцитов или тромбоцитосодержащих...
Тип: Изобретение
Номер охранного документа: 0002639918
Дата охранного документа: 25.12.2017
Showing 1-10 of 16 items.
27.12.2013
№216.012.8ed3

Устройство инициирования процессов в атмосфере

Изобретение касается метеорологии и может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство содержит генератор высокочастотного напряжения и присоединенную к нему систему коронирующих электродов, каждый из которых выполнен в виде соленоида с венчиком игл на концах,...
Тип: Изобретение
Номер охранного документа: 0002502256
Дата охранного документа: 27.12.2013
20.11.2015
№216.013.9110

Способ коррекции погодных условий

Изобретение относится к области метеорологии и сельского хозяйства. Способ включает длительное воздействие на локальную область атмосферы тепловым лучом сфокусированного солнечного потока. Луч получают с помощью оптической линзы многокилометровых размеров. Линзу создают в ионосфере при...
Тип: Изобретение
Номер охранного документа: 0002568752
Дата охранного документа: 20.11.2015
27.03.2016
№216.014.c77a

Способ определения объема выбросов в атмосферу от природных пожаров

Изобретение относится к области дистанционного мониторинга природной среды и касается способа определения объема выбросов в атмосферу от природных пожаров. Способ включает синхронную съемку поверхности установленными на космическом носителе цифровой видеокамерой и гиперспектрометром, выделение...
Тип: Изобретение
Номер охранного документа: 0002578515
Дата охранного документа: 27.03.2016
12.01.2017
№217.015.58f3

Способ определения дигрессии надпочвенного покрова в арктической зоне

Изобретение относится к области экологии и может найти применение при контроле состояния территорий вечной мерзлоты в целях раннего обнаружения критических состояний. Способ определения дигрессии надпочвенного покрова в Арктической зоне включает регистрацию двух разнотипных сигналов средствами,...
Тип: Изобретение
Номер охранного документа: 0002588179
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.644e

Глобальная система измерений предвестников землетрясений

Изобретение относится к области сейсмологии и может быть использовано для измерения предвестников землетрясений. Сущность: система содержит множество первичных датчиков-фотометров (1) контроля оптической плотности атмосферы, функционирующих в режиме отслеживания превышения сигнала...
Тип: Изобретение
Номер охранного документа: 0002589444
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.b4eb

Система контроля участков нарушения вечной мерзлоты в арктической зоне

Изобретение относится к области экологии и может быть использовано для контроля участков нарушения вечной мерзлоты в Арктической зоне. Сущность: система включает средства дистанционного зондирования подстилающей поверхности, размещенные на высокоширотном космическом носителе (1), Центр (10)...
Тип: Изобретение
Номер охранного документа: 0002614182
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.baa8

Способ контроля фонового уровня радиации вокруг аэс

Изобретение относится к способам контроля радиационной обстановки и может быть использовано для контроля фонового уровня радиации вокруг АЭС. Сущность: осуществляют зондирование территорий АЭС, содержащих эталонные площадки с известным уровнем радиации. Причем для зондирования используют...
Тип: Изобретение
Номер охранного документа: 0002615706
Дата охранного документа: 07.04.2017
26.08.2017
№217.015.d867

Способ выбора вида пород для плана озеленения

Способ может быть использован в лесном хозяйстве, при озеленении территорий городских поселений, в садово-парковом хозяйстве. Способ характеризуется тем, что осуществляют измерения совокупности показателей, определяющих объем продуцирующей кислород биомассы каждого вида для участков...
Тип: Изобретение
Номер охранного документа: 0002622708
Дата охранного документа: 19.06.2017
20.01.2018
№218.016.17a8

Способ мониторинга надпочвенного покрова импактных районов арктики

Изобретение относится к дистанционным методам изучения почвенного покрова и может быть использовано для мониторинга почвенного покрова арктических районов. Сущность: с помощью средств, установленных на воздушно-космическом носителе, получают синхронные изображения в ультрафиолетовом и ближнем...
Тип: Изобретение
Номер охранного документа: 0002635823
Дата охранного документа: 16.11.2017
10.05.2018
№218.016.39b0

Измеритель предвестников землетрясений

Изобретение относится к области сейсмологии и может быть использовано для обнаружения предвестников землетрясений. Сущность: измеритель содержит мостовую схему (1) на постоянном токе от источника (2), работающую в режиме разбалансировки. В одно из плеч мостовой схемы (1) включено...
Тип: Изобретение
Номер охранного документа: 0002647210
Дата охранного документа: 14.03.2018
+ добавить свой РИД