×
02.03.2020
220.018.0803

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с датчиками волнового фронта (ДВФ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта содержит получение радиуса ближайшей сферы R и волнового фронта сферической формы W(ρ). В положении начальной установки для измеряемой асферической оптической детали, характеризующейся получением автоколлимационного хода лучей, контролируемого по получению плоского волнового фронта на датчике волнового фронта (ДВФ), фиксируют отличия волнового фронта от ближайшей сферы W(ρ) для вычисления коэффициентов уравнения асферической поверхности заданного порядка путем минимизации разницы этого уравнения и суммы сферического волнового фронта W(ρ) и половины величины W(ρ), т.е. где А, А, A, … - коэффициенты соответствующего порядка асферики, k - коническая константа, ρ - радиальная координата на зрачке, R - радиус вершинной сферы. Технический результат - возможность восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта.
Реферат Свернуть Развернуть

1. Область техники, к которой относится изобретение

Предлагаемое изобретение относится к разработкам в области измерительных оптических систем и может применяться в системах контроля качества и других областях оптической промышленности.

2. Уровень техники

Задача восстановления формы асферической поверхности оптической детали является достаточно важной и актуальной, особенно в области высокоточных и астрономических оптических систем.

Существует способ контроля формы асферических поверхностей второго порядка с использованием анаберрационных точек, описанный в патенте RU №2396513, использующий сложную оптическую систему и достаточно трудоемкий с точки зрения юстировочных операций. Также известны способы контроля качества асферической поверхности с помощью интерферометра, которые предполагают наличие в измерительной ветви оптического корректора хода лучей для измерения отклонений формы поверхности от эталонной (Д.Т. Пуряев «Методы контроля оптических асферических поверхностей», Москва: Машиностроение, 1976 г.). В настоящее время линзовые оптические корректоры заменяются на голографические, называемые дифракционными оптическими элементами (ДОЭ), используемыми в интерферометрах, сделанных по различным схемам (авторское свидетельство SU 1017923, патент на изобретение RU №2534435).

Однако все эти способы не позволяют получить уравнение формы асферической поверхности в явном виде и требуют для своего осуществления изготовления дорогостоящего оптического корректора. В силу выше изложенного, в качестве прототипа выбран способ измерения радиуса кривизны поверхности оптической детали, описанный в патенте RU 2667323 (Способ и устройство дифференциального определения радиуса кривизны крупногабаритных оптических деталей с использованием датчика волнового фронта).

В прототипном способе измеряют радиус кривизны сферической поверхности Rз дифференциальной методикой, вычисляя его по формуле

где Δз и Δэт - смещения прибора относительно точки автоколлимации для измеряемого и эталонного зеркала, соответственно, дающие одинаковую величину радиуса кривизны волнового фронта, регистрируемого ДВФ, а Rэт - радиус эталонного зеркала.

В самом деле, для получения уравнения формы асферической поверхности такого измерения недостаточно, поскольку при установке в прибор асферической оптической детали такие измерения дадут лишь радиус ближайшей сферы. В результате ограничением такого способа будет невозможность контроля несферических поверхностей. Тем не менее, для получения уравнения асферической поверхности необходимо знать радиус ближайшей сферы, поэтому в качестве прототипа выбран способ, позволяющий это сделать.

3. Раскрытие изобретения

Для решения поставленной задачи был разработан новый способ, в котором после измерения радиуса ближайшей сферы Rз (отклонение от которой у асферической поверхности минимально) необходимо зафиксировать отклонение волнового фронта Was от ближайшего сферического волнового фронта Ws с радиусом Rз в положении начальной установки для измеряемой асферической оптической детали (когда совпадение центра кривизны ближайшей сферы и фокуса насадки прибора обеспечат автоколлимационный ход лучей, контролируемый по получению плоского волнового фронта на ДВФ). Затем, учитывая, что Was это удвоенная величина отклонения самой измеряемой поверхности, необходимо сложить полученный сферический волновой фронт Ws с величиной Was/2, т.е получить сумму

Эта сумма будет полностью соответствовать форме измеряемой асферической поверхности. Для того, чтобы получить уравнение поверхности в каноническом виде достаточно любым математическим способом (например, методом наименьших квадратов) подобрать коэффициенты этого канонического уравнения формы асферической поверхности, приравняв его указанной выше сумме:

где А4, А6, A8, … - коэффициенты соответствующего порядка асферики, k - коническая константа, ρ - радиальная координата на зрачке, R - радиус вершинной сферы, который в случае асферики второго порядка соотносится с измеренным радиусом Rз ближайшей сферы соотношением:

и, соответственно,

где h - половина светового диаметра исследуемой поверхности. Для асферики более высоких порядков выражение будет в первом приближении таким же, однако, численными методами все неизвестные коэффициенты в выражении (2) подбираются достаточно просто.

Таким образом, предлагаемый способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с ДВФ позволяет получить уравнение формы исследуемой асферической поверхности и определить величину отклонения формы ΔS изготовленной поверхности от заданной путем вычисления разницы выражения (2) и заданного уравнения асферики

Принципиальным отличием является возможность восстановления формы асферической поверхности контролируемой детали.

3. Осуществление изобретения.

Пример осуществления изобретения

Для проверки работоспособности предлагаемого к патентованию способа восстановления формы асферической поверхности оптической детали по параметрам волнового фронта, получаемым приборами с ДВФ, в МГТУ им. Н.Э. Баумана в рамках НИР были проведены измерения на изготовленном авторами приборе (RU 2667323).

В качестве исследуемой оптической детали было взято параболическое зеркало (k=-1) с радиусом вершинной сферы 1736 мм и ошибкой формы PV=λ/8 (соответственно ошибка rms ~ λ/40) по паспорту.

Волновой фронт Was датчиком волнового фронта определялся как набор полиномов Цернике, а сферический волновой фронт Ws в этой системе координат характеризовался коэффициентом С21, называемым дефокусировка:

где h - половина диаметра измеряемой детали, а Rз - радиус ближайшей сферы, измеренный способом, приведенным в RU 2667323.

В результате восстановления поверхности получились следующие параметры уравнения параболической поверхности:

- вычисленный радиус вершинной сферы 1736,36 мм,

- коническая константа k=-0,9898,

- отличие восстановленного уравнения формы от исходного (ошибка rms) составило ~ λ/44.


Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с датчиками волнового фронта (ДВФ)
Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с датчиками волнового фронта (ДВФ)
Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с датчиками волнового фронта (ДВФ)
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
23.07.2019
№219.017.b71e

Способ определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием методом оптической дальнометрии

Изобретение предназначено для определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием при контроле и настройке оптических элементов. Способ измерения радиуса кривизны оптических деталей больших размеров с центральным осевым отверстием содержит...
Тип: Изобретение
Номер охранного документа: 0002695085
Дата охранного документа: 19.07.2019
16.01.2020
№220.017.f52c

Устройство с разнесенными ветвями для измерения радиусов кривизн вогнутых оптических деталей

Изобретение относится к оптическим измерительным системам. Устройство измерения радиуса кривизны вогнутой оптической сферической поверхности c разнесенными ветвями содержит точечный источник, оптическую систему измерительной части, включающую светоделительный элемент, датчик волнового фронта. В...
Тип: Изобретение
Номер охранного документа: 0002710976
Дата охранного документа: 14.01.2020
Showing 1-10 of 24 items.
20.10.2013
№216.012.76e6

Устройство для определения углового отклонения оси лазерного пучка от номинального положения

Устройство содержит призменную систему, включающую первую пару пентапризм, содержащую первую и вторую пентапризмы, главные сечения которых расположены в одной плоскости Р, оптический клин, склеенный с первой отражающей гранью первой пентапризмы и выполненный так, что его выходная грань...
Тип: Изобретение
Номер охранного документа: 0002496098
Дата охранного документа: 20.10.2013
10.04.2014
№216.012.af5e

Устройство оптической идентификации измерительных каналов системы встроенного неразрушающего контроля на основе волоконно-оптических брэгговских датчиков

Изобретение относится к приспособлениям для регистрации сигналов с набора волоконно-оптических брэгговских датчиков системы встроенного неразрушающего контроля (ВНК) объекта. Устройство оптической идентификации измерительных каналов системы встроенного неразрушающего контроля на основе...
Тип: Изобретение
Номер охранного документа: 0002510609
Дата охранного документа: 10.04.2014
10.01.2015
№216.013.1786

Способ изготовления заготовок для волоконных световодов на основе кварцевого стекла, легированного азотом

Изобретение относится к области волоконной оптики и, в частности, к формированию заготовок волоконных световодов осаждением из газовой фазы. Техническим результатом изобретения является разработка режима изготовления заготовок для волоконных световодов на основе легированного азотом кварцевого...
Тип: Изобретение
Номер охранного документа: 0002537450
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17cf

Радиационно-стойкий волоконный световод, способ его изготовления и способ повышения радиационной стойкости волоконного световода (варианты)

Группа изобретений относится к области волоконных световодов, стойких к воздействию ядерного и/или ионизирующего излучения. Волоконный световод получают методом химического осаждения кварцевого стекла из смеси исходных газообразных реагентов. Световод имеет сердцевину из нелегированного...
Тип: Изобретение
Номер охранного документа: 0002537523
Дата охранного документа: 10.01.2015
27.04.2015
№216.013.4674

Устройство мониторинга состояния трубопроводов большой длины, в том числе подводных трубопроводов

Изобретение относится к волоконно-оптическим сенсорным системам, используемым в нефтегазодобывающей промышленности, и может быть использовано для диагностики трубопроводов большой протяженности, в т.ч. подводных, с целью обнаружения утечек из них прокачиваемого материала. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002549540
Дата охранного документа: 27.04.2015
20.01.2016
№216.013.a244

Устройство для контроля параметров качества плоских оптических деталей, расположенных под углом к оптической оси

Изобретение относится к области оптического приборостроения, а именно к интерференционным системам и методам контроля качества оптических поверхностей. Устройство для контроля качества плоских оптических деталей, расположенных под углом к оптической оси, состоит из передающего канала,...
Тип: Изобретение
Номер охранного документа: 0002573182
Дата охранного документа: 20.01.2016
12.01.2017
№217.015.5b50

Волоконно-оптическое устройство большой протяженности с источником малой мощности для регистрации вибрационных воздействий

Изобретение относится к волоконно-оптическим сенсорным системам, используемым в системах мониторинга протяженных и крупногабаритных объектов, и может быть использовано для мониторинга состояния судна и элементов его конструкции (баки и т.д.) путем акустоэмиссионной диагностики, детектируя...
Тип: Изобретение
Номер охранного документа: 0002589492
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8350

Сапфировый терагерцовый фотонно-кристаллический волновод

Изобретение относится к области элементной базы терагерцовой оптотехники, в частности к волноводам для передачи терагерцового излучения. Сапфировый терагерцовый фотонно-кристаллический волновод представляет собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде...
Тип: Изобретение
Номер охранного документа: 0002601770
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b165

Оптический датчик дыма

Предложен датчик дыма. Он содержит источник излучения с блоком питания и отражатель, оптически сопряженный с источником излучения, опорный приемный канал, оптически сопряженный с источником излучения, выход которого соединен с входом блока питания, измерительный приемный канал, оптически...
Тип: Изобретение
Номер охранного документа: 0002613274
Дата охранного документа: 15.03.2017
26.08.2017
№217.015.da14

Устройство и способ определения радиуса кривизны крупногабаритных оптических деталей на основе датчика волнового фронта

Заявленное изобретение относится к разработкам в области измерительных оптических систем и может применяться в системах контроля качества и других областях оптической промышленности. Заявленное устройство определения радиуса кривизны крупногабаритной оптической детали на основе датчика...
Тип: Изобретение
Номер охранного документа: 0002623702
Дата охранного документа: 28.06.2017
+ добавить свой РИД