×
10.07.2019
219.017.b0cb

СПОСОБ ПОЛУЧЕНИЯ ЛИТИЕВОГО ЖИДКОГО СТЕКЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам получения жидкого литиевого стекла, используемого для создания терморегулируемых покрытий космических аппаратов нового поколения, а также в составах композиционных материалов, при изготовлении силикатных пленок, антибликовых покрытий. Способ осуществляют введением в предварительно нагретый водный раствор гидроксида лития кремниевой кислоты, содержащей 65-80 мас.% диоксида кремния, с последующим перемешиванием реакционной смеси при повышенной температуре и фильтрационной очисткой продукта реакции, при этом к 5,5-9,7%-ному водному раствору гидроксида лития, предварительно нагретому до 35-45°С, при постоянном повышении температуры реакционной массы со скоростью 1-3°С/мин при перемешивании добавляют порошкообразную кремниевую кислоту со скоростью 6,0-22,0 г/мин, после чего реакционную массу перемешивают при температуре 60-80°С до полного растворения кремниевой кислоты и раствор фильтруют при температуре 50-80°С при разрежении 0,2-0,5 атм. Покрытия, получаемые на основе такого литиевого стекла, обладают повышенной адгезией к подложкам, а также повышенной долговечностью, трещиностойкостью и стойкостью к факторам космического пространства. 5 пр., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к способам получения жидких стекол, в частности высокомодульного литиевого стекла, используемого для создания терморегулирующих покрытий космических аппаратов нового поколения, а также в составах композиционных материалов, при изготовлении силикатных пленок, антибликовых покрытий.

Литиевым жидким стеклом (ЛЖС) называют прозрачные силикатные растворы силиката лития с модулями более 1,5, которые, согласно известным представлениям, рассматриваются как полимерные соединения, состоящие из катионов лития и полимерных силикат-анионов невысокой степени полимеризации. Жидкое литиевое стекло, так же как натриевое и калиевое жидкие стекла, сохраняет признаки истинного раствора: гомогенность, постоянство концентрации, термодинамическую устойчивость (Корнеев В.И., Данилов В.В. Жидкое и растворимое стекло. СПб: Стройиздат, 1996, 216 с.).

Известно получение литиевого жидкого стекла, основанное на ионном обмене ионов щелочных металлов (натрия, калия) на ионы лития, осуществляемом при взаимодействии силикатов щелочных металлов с литийсодержащим соединением, например, гидроксидом лития (US 3392039, С01В 33/32, 1968; SU 833496, С01В 33/32, 1981). Основным общим недостатком этих известных способов, с технологической точки зрения, является использование сильно разбавленных растворов, которые затем необходимо концентрировать, что приводит к большой длительности и трудоемкости процессов, и делает их практически неприменимыми в промышленных условиях.

Литиевое жидкое стекло получают также растворением аморфного тонкодисперсного диоксида кремния в растворе гидроксида лития (US 3579597, С01В 33/32, 1971; US 3180747, С01В 33/32, 1965). Однако, при получении литиевых жидких стекол данными способами, также как и в вышерассмотренных способах, получаются сильно разбавленные и низкомодульные растворы.

Для получения литиевого жидкого стекла применим также метод, включающий реакцию взаимодействия алкоксисиланов с соединениями лития. Эту реакцию в известных способах обычно проводят при высоких температурах, например, при температуре кипения смеси алкоксисиланов с гидроксидом лития (US 4120938, С01В 33/32, 1978), причем в качестве тетраалкоксисиланов чаще всего используют тетраэтоксисилан, а в качестве литиевых соединений используют как гидроксид лития, так и его соли, например ацетат лития (KR 20090089642, С01В 33/32, 2009). Однако проведение процесса при высоких температурах приводит к повышенной энергоемкости процесса, а также к сложности его аппаратурного оформления.

Еще один известный метод синтеза, к которому относится и рассматриваемое новое изобретение, включает реакцию взаимодействия кремниевой кислоты с гидроксидом лития (JP 59-69417, С01В 33/32, 1984; SU 1498709, С01В 33/32, 1989).

По последнему цитируемому способу (SU 1498709) литиевое жидкое стекло получают взаимодействием гидроксида лития и кремниевой кислоты, содержащей 15-80 мас.% диоксида кремния, и при молярном соотношении диоксида кремния к оксиду лития и к воде в исходных продуктах, равном 1:(0,22-1):(11,7-25,7), причем кремниевую кислоту вводят при перемешивании со скоростью 5-20 кг/ч в предварительно подогретый до 40-60°С раствор гидроксида лития и перемешивание осуществляют при той же температуре в течение 1-4 часов, а затем раствор фильтруют через фторопластовую пластину (SU 1498709, С01В 33/32, 1989). Известным способом получают прозрачный раствор силиката лития с содержанием диоксида кремния 11,25-21,85 мас.%, оксида лития 1,78-9,87 мас.% и силикатным модулем (молярным соотношением диоксида кремния к оксиду лития), равным 1,01-4,53. Данный способ, как наиболее близкий по технической сущности новому способу, выбран в качестве способа-прототипа. Однако получаемые по способу-прототипу ЛЖС не могут быть использованы для создания терморегулирующих покрытий (ТРП), поскольку они по своим качественным показателям не соответствуют требованиям, предъявляемым к ТРП.

Для получения высокомодульных литиевых жидких стекол, которые могут быть использованы как связующие для получения терморегулирующих покрытий, предлагается новый способ получения литиевого жидкого стекла, который осуществляют введением порошкообразной кремниевой кислоты, содержащей 65-80 мас.% диоксида кремния, в 5,5-9,7%-ный водный раствор гидроксида лития, предварительно нагретый до температуры 35-45°С, причем процесс проводится при постоянном повышении температуры реакционной массы со скоростью 1-3°С/мин, а кремниевая кислота вводится в раствор гидроксида лития со скоростью, равной 6,0-22,0 г/мин, после чего реакционная масса перемешивается при температуре 60-80°С до полного растворения кремниевой кислоты и затем подвергается горячему фильтрованию при температуре раствора 50-80°С при разрежении 0,2-0,5 атм.

Новое изобретение отличается от способа-прототипа как количественным соотношением реагентов, так и режимами осуществления процесса, а именно температурно-временными режимами на всех стадиях процесса, количественными признаками способа, контролируемой скоростью введения кремневой кислоты и контролируемой скоростью подъема температуры, а также режимом стадии фильтрации.

В новом способе, как и в способе-прототипе, в качестве исходных реагентов используют кремниевую кислоту с содержанием диоксида кремния 65-80% и гидроксид лития и кремниевую кислоту добавляют к раствору гидроксида лития.

Интервал концентрации 65-80% SiO2 определяется фактическим содержанием SiO2 в используемом реактивном сырье промышленного производства. Концентрация ОН- менее 5.5% приводит к образованию сильно разбавленных растворов, а максимальная концентрация 9,7% соответствует насыщенному раствору.

Кремниевая кислота в новом способе, как и в способе-прототипе, добавляется к гидроксиду лития с контролируемой скоростью введения, только в прототипе эта величина составляет 5-20 кг/час, или 83-333 г/мин, а в новом способе эта величина составляет 6,0-22,0 г/мин. При скорости загрузки менее 6,0 г/мин значительно замедляется процесс, а при скорости более 22,0 г/мин ухудшается качество конечного продукта. Существенным признаком способа является скорость подъема температуры нагревания реакционной массы, выбранной в интервале 1-3°С, определяющей максимально высокое качество продукта. В совокупности с контролируемым подъемом температуры в процессе загрузки кремниевой кислоты указанные факторы приводят к получению растворов силиката лития, отличающихся повышенной клейкостью.

При предварительном нагреве раствора гидроксида лития ниже 35°С практически не происходит гидратации гранул кремниевой кислоты, выше 45°С - образовываются короткие силикат-анионы. При температуре синтеза ниже 60°С процесс протекает медленно, при температуре выше 80°С происходит сильный гидролиз реакционной массы с образованием хлопьев.

Условия горячего фильтрования растворов ЛЖС при температуре 50-80°С и разрежении 0,2-0,5 атм, выбранные экспериментально, позволяют значительно интенсифицировать процесс фильтрации.

Сопоставление качества покрытий на основе ЛЖС, полученного по способу-прототипу, с новым способом показали, что адгезия к подложкам из стекла, металлическим сплавам и полимерным материалам составляет в первом случае 3-4 балла и 1-3 балла соответственно. Эти данные, с одной стороны, говорят о техническом преимуществе ЛЖС, полученных новым способом, а с другой стороны, подтверждают наличие технического эффекта при использовании нового способа. Пигментно-наполненные покрытия, в частности терморегулирующие покрытия (ТРП) космических аппаратов, изготовленные с применением ЛЖС, полученных по заявляемому способу, по сравнению с ранее разработанными композициями на основе калиевых, натриевых и литиевых стекол, полученных по способу-прототипу, обладают не только более высокой адгезией к металлическим сплавам и высокой водостойкостью, но и отличаются повышенными долговечностью, трещиностойкостью, и стойкостью к факторам космического пространства, что является одним из наиболее важных показателей для ТРП на космических аппаратах длительных сроков эксплуатации.

Как показали дополнительные исследования, уникальные свойства получаемого продукта могут быть объяснены образованием более высокомолекулярных силикат-анионов, чем в калиевых, натриевых и литиевых жидких стеклах, полученных по способу-прототипу, и более близки по структуре к глобулам концентрированных силикатных золей. Образованию таких глобул способствует гидратация кремниевой кислоты при медленном введении ее в реакционную массу при контролируемом режиме повышения температуры. Гидратация в области относительно низких температур первоначально введенных порций кремниевой кислоты способствует росту силикат-анионов за счет новых порций кремниевой кислоты уже на стадии загрузки и позволяет в дальнейшем повысить температуру синтеза до 80°С, что также способствует образованию более длинных и разветвленных силикат-анионов. Такие силикат-анионы более эффективно структурируют покрытия в процессе высушивания.

Испытаниями было показано, что в ТРП на основе литиевых жидких стекол, полученных по новому способу, преобладает диффузионная составляющая поглощения солнечного излучения, создающая антибликовый эффект, в результате чего повышается суммарный коэффициент поглощения в соответствии с формулой:

Rотр=Rзерк+Rдиф

Все рассмотренные признаки нового способа в комплексе влияют на эффективность процесса, обеспечивая интенсивное осуществление процесса (в течение 0,5-2,5 часов), и, кроме того, данным способом получают продукт высокого качества, отвечающий требованиям, предъявляемым к продуктам, применяемым в высокотехнологичных областях техники и непосредственно для создания ТРП для космических аппаратов нового поколения.

Важнейшими показателями качества ТРП являются стойкость к протонному излучению, повышенная электропроводность, обеспечивающая отекание электростатических зарядов с поверхности космического аппарата и низкое газовыделение.

В таблице сопоставлены вышеперечисленные основные показатели ТРП, полученные на различных применяющихся в настоящее время связующих, показывающие однозначное и существенное преимущество литиевых силикатных связующих, полученных по новому способу. Основные показатели литиевого жидкого стекла, полученного по способу-прототипу, сопоставимы с показателями ТРП, полученными на калиевых жидких стеклах, приведенных в последнем столбце таблицы.

Таблица
Показатели Связующие
Фторлон Ф-32Л Акриловая смола АС Лак КО-08 Лак КО-116 ЛЖС* КЖС, ЛЖС1
Изменение коэффициента поглощения солнечной энергии при воздействии протонного излучения As 5,0 3,2 0,08 1,0 0,041 0,06-0,07
0,065
0,052
0,052
0,055
Удельное объемное сопротивление, R, Oм·м 1012-1013 108-1010 1011-1012 1011-1012 3·105 106-107
8·106
5·103
Газовыделение по ГОСТ 50109-92: 3,2 0,98 2-4 3-11 0,11-0,28 0,12-0,30
Реальная потеря массы, мас.% 1,02 0,10 0,6-0,8 2,4-9,1 0,02-0,08 0,02-0,09
Легколетучие конденсирующиеся вещества, мас.%
Примечания
1) ЛЖС* - полученное по новому способу;
2) ЛЖС1 - полученное по способу-прототипу;
3) Нормы по ГОСТ 50109-92 мас.%, не более:
- Реальная потеря массы - 1,0;
- Легколетучие конденсирующиеся вещества - 0,1.

Следует отметить также, что композиции для нанесения ТРП не содержат органических растворителей, являются нетоксичными. Использование воды в качестве растворителя улучшает санитарно-гигиенические условия при нанесении ТРП и не влияет на оптические свойства элементов оптических систем космических аппаратов. Ниже изобретение иллюстрируется примерами, которые никак не ограничивают возможность осуществления данного процесса при других параметрах, но находящихся в рамках заявляемого объема притязания.

Пример 1

В полипропиленовый реакционный сосуд заливают 361 г раствора гидроксида лития с концентрацией 5,50% и нагревают раствор на водяной бане при перемешивании до 35°С. Загрузку 137,5 г водной порошкообразной кремневой кислоты, содержащей 72,5% диоксида кремния, ведут при перемешивании со скоростью введения 14 г/мин при одновременном подъеме температуры от 35 до 45°С со скоростью 1°С/мин. Далее, продолжая перемешивание реакционной массы, повышают температуру с той же скоростью до 60°С. Время перемешивания составляет 2,5 часа от момента начала загрузки до полного растворения кремниевой кислоты. Раствор фильтруют на нутч-фильтре через слой бельтинга и фторопластовую пластину при 50°С при разрежении 0,5 атм. После фильтрования получают прозрачный раствор с содержанием 17,41% диоксида кремния, 2,16% оксида лития, плотностью 1,162 г/см3 модулем 3,9.

Пример 2

Проводят аналогично примеру 1, а именно заливают 164,7 г раствора гидроксида лития с концентрацией 9,7% и нагревают раствор до 45°С. Загрузку 69,6 г водной порошкообразной кремниевой кислоты, содержащей 65% диоксида кремния, ведут при скорости загрузки 6,0 г/мин, при скорости нагревания 2°С до температуры 80°С. Процесс перемешивания при 80°С (от момента начала загрузки) продолжают 2 часа. Фильтрование ведут, как в примере 1, но при температуре 80°С и разрежении 0,4 атм. Горячее фильтрование ведут, как в примере 1, при 80°С при разрежении 0,2 атм. получают прозрачный раствор с содержанием 15,3% диоксида кремния и 2,9% оксида лития, плотностью 1,153 г/см3 и модулем 2,7.

Пример 3

Проводят аналогично примеру 1, а именно заливают 491 г раствора гидроксида лития с концентрацией 6,4% и нагревают раствор до 45°С. Загрузку 162,9 г водной порошкообразной кремниевой кислоты, содержащей 75% диоксида кремния, ведут при перемешивании со скоростью введения кремниевой кислоты 22,0 г/мин при одновременном подъеме температуры до 60°С со скоростью 3,0°С/мин. Время процесса, включая загрузку, составляет 2,5 часа. Раствор фильтруют, как в примере 1, при температуре 50°С и разрежении 0,3 атм. После фильтрования получают прозрачный продукт с содержанием диоксида кремния 20,90%, оксида лития 2,87%, плотностью 1,203 г/см3 и модулем 3,6.

Пример 4

Аналогично примеру 1 заливают 625 г раствора гидроксида лития с концентрацией 7,11% и нагревают раствор на водяной бане до 45°С. Загрузку 174,9 г водной порошкообразной кремниевой кислоты, содержащей 80% диоксида кремния, ведут при скорости подачи кремниевой кислоты, равной 12,8 г/мин, при одновременной подъеме температуры до 80°С со скоростью 2,3°С. Процесс синтеза от момента начала загрузки продолжается 30 мин. Раствор фильтруют, как в примере 1, при температуре 80°С и разрежении 0,2 атм. После фильтрования получают прозрачный продукт с содержанием диоксида кремния 20,6% и оксида лития 3,43%, плотностью 1,204 г/см3 и модулем 3,0.

Пример 5(альтернативный)

Проводят аналогично примеру 1, а именно заливают 164,7 г раствора гидроксида лития с концентрацией 9,7% и нагревают раствор до 80°С. Загрузку 69,6 г водной порошкообразной кремниевой кислоты, содержащей 65% диоксида кремния, ведут при скорости загрузки 6,03 г/мин, при температуре 80°С. Процесс перемешивания при 80°С (от момента начала загрузки) продолжают 2 часа. Фильтрование ведут, как в примере 1, но при температуре 80°С и разрежении 0,2 атм. Получают мутный продукт, содержащий большой избыток нерастворенной кремниевой кислоты. После фильтрования получают полупрозрачный раствор с содержанием 15,2% диоксида кремния и 2,7% оксида лития, плотностью 1,153 г/см3 и модулем 2,7.

Способ получения литиевого жидкого стекла введением в предварительно нагретый водный раствор гидроксида лития кремниевой кислоты, содержащей 65-80 мас.% диоксида кремния, с последующим перемешиванием реакционной смеси при повышенной температуре и фильтрационной очисткой продукта реакции, отличающийся тем, что к 5,5-9,7%-ному водному раствору гидроксида лития, предварительно нагретому до 35-45°С, при постоянном повышении температуры реакционной массы со скоростью 1-3°С/мин при перемешивании добавляют порошкообразную кремниевую кислоту со скоростью 6,0-22,0 г/мин, после чего реакционную массу перемешивают при температуре 60-80°С до полного растворения кремниевой кислоты и раствор фильтруют при температуре 50-80°С при разрежении 0,2-0,5 атм.
Источник поступления информации: Роспатент

Showing 1-10 of 33 items.
27.08.2013
№216.012.63f8

Способ очистки нитрата калия

Изобретение относится к способам очистки нитрата калия до получения высокочистого продукта, который может быть применен в современных областях науки и техники (волоконная оптика, оптическое стекловарение, монокристаллы и др.). Очистку водного раствора нитрата калия осуществляют обработкой при...
Тип: Изобретение
Номер охранного документа: 0002491229
Дата охранного документа: 27.08.2013
27.10.2014
№216.013.0317

Способ получения чистого карбоната кальция

Изобретение может быть использовано при получении продуктов для оптического стекловарения. Способ получения чистого карбоната кальция включает карбонизацию газообразным диоксидом углерода водной суспензии гидроксида кальция. Диоксид углерода используют с 25-30% мольным избытком по отношению к...
Тип: Изобретение
Номер охранного документа: 0002532189
Дата охранного документа: 27.10.2014
10.02.2015
№216.013.22ae

Способ получения бензоаза-12-крауна-4

Изобретение относится к способу получения бензоаза-12-крауна-4, осуществляемого конденсацией о-аминофенола с дихлоридом триэтиленгликоля с последующим выделением целевого продукта, отличающемуся тем, что исходный о-аминофенол в среде изопропилового спирта обрабатывают гидроокисью натрия и...
Тип: Изобретение
Номер охранного документа: 0002540331
Дата охранного документа: 10.02.2015
20.04.2015
№216.013.42b3

Способ получения иминодиуксусной кислоты

Изобретение относится к способу получения иминодиуксусной кислоты, которая может найти применение в качестве комплексонного фрагмента при создании на ее основе полифункциональных лигандов, являющихся металлоиндикаторами. Согласно предлагаемому способу осуществляют взаимодействие водного...
Тип: Изобретение
Номер охранного документа: 0002548573
Дата охранного документа: 20.04.2015
10.09.2015
№216.013.75bd

Способ получения 3-хлорметил-4-метоксибензальдегида

Изобретение относится к способу получения 3-хлорметил-4-метоксибензальдегида, в основном применяемого в качестве исходного продукта при синтезе различных химических соединений, в частности гетероциклических соединений, стиролдифенилпроизводных, биологически активных соединений. Способ...
Тип: Изобретение
Номер охранного документа: 0002561730
Дата охранного документа: 10.09.2015
27.10.2015
№216.013.87d1

Способ получения монохлорацетата серебра

Изобретение относится к органической химии, а именно к группе галогенацетатов, и непосредственно касается получения монохлорацетата серебра, применяемого, в частности, для получения полимерных материалов, используемых в медицине. Способ получения монохлорацетата серебра включает использование в...
Тип: Изобретение
Номер охранного документа: 0002566372
Дата охранного документа: 27.10.2015
27.04.2016
№216.015.3944

Комплексонаты этилендиамин-β-пропионовых кислот с двухвалентными металлами: медью, цинком, никелем и кобальтом, и способы их получения

Изобретение относится к химии этилендиаминпропионовых кислот и непосредственно касается комплексонатов этилендиамин-β-пропионовых кислот с двухвалентными металлами: медью, цинком, никелем и кобальтом. Комплексонат имеет общую формулу (RRNCHCHNRR)M, где M=Cu(II), Zn(II), Ni(II), Co(II); R, R=H;...
Тип: Изобретение
Номер охранного документа: 0002582680
Дата охранного документа: 27.04.2016
20.05.2016
№216.015.3f44

Способ получения сверхвысокомолекулярного полиэтилена, модифицированного наноразмерными частицами оксида циркония

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена (СВМПЭ) модифицированного наноразмерными частицами оксида циркония, предназначенного для изготовления керамики, катализаторов, биомедицинских материалов. Способ осуществляют в несколько стадий. Сначала получают...
Тип: Изобретение
Номер охранного документа: 0002584159
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5bf0

Способ получения 1, 3-диамино-2-гидроксипропан-n, n'-диметилфосфоновой-n, n'-диуксусной кислоты

Изобретение относится к способу получения 1,3-диамино-2-гидроксипропан-N,N′-диметилфосфоновой-N,N′-диуксусной кислоты, которая может быть применена в качестве ингибитора отложения минеральных солей в системах водопользования промышленных предприятий, предприятий большой и малой энергетики и...
Тип: Изобретение
Номер охранного документа: 0002589715
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d7f

Способ получения сверхвысокомолекулярного полиэтилена, модифицированного наноразмерными частицами оксида титана

Изобретение может быть использовано в химической, добывающей, пищевой отраслях промышленности и в медицине. Для получения сверхвысокомолекулярного полиэтилена (СВМПЭ), модифицированного наноразмерными частицами оксида титана, к исходному СВМПЭ при интенсивном перемешивании добавляют...
Тип: Изобретение
Номер охранного документа: 0002590556
Дата охранного документа: 10.07.2016
Showing 1-10 of 10 items.
27.11.2013
№216.012.8553

Состав для изготовления огнезащитного покрытия

Изобретение относится к области огнезащитных материалов напыляемого типа для защиты металлических конструкций и касается состава для изготовления огнезащитного покрытия. Cостав в виде сухой смеси включает цемент, вермикулит, каолин, сухой редиспергируемый латекс, волокнистый материал,...
Тип: Изобретение
Номер охранного документа: 0002499809
Дата охранного документа: 27.11.2013
27.07.2014
№216.012.e4e2

Терморегулирующее покрытие

Изобретение относится к области космического материаловедения, а именно к покрытиям пассивной терморегуляции класса «истинный поглотитель». Терморегулирующее покрытие (ТРП) в конструкциях космических аппаратов применяется на поверхности оптических приборов, систем наблюдения, радиаторов...
Тип: Изобретение
Номер охранного документа: 0002524384
Дата охранного документа: 27.07.2014
10.09.2014
№216.012.f2df

Состав для теплозащитных покрытий

Изобретение относится к составам для получения теплозащитных покрытий, которые могут быть применены для наружной теплозащиты элементов конструкций космических аппаратов, а также в строительстве и авиационной технике. Состав для теплозащитных покрытий содержит в качестве органического связующего...
Тип: Изобретение
Номер охранного документа: 0002527997
Дата охранного документа: 10.09.2014
27.06.2015
№216.013.5872

Радиационно-защитное терморегулирующее покрытие для космических аппаратов

Изобретение относится к области космического материаловедения, а именно к терморегулирующим покрытиям класса «солнечные отражатели». Радиационно-защитное терморегулирующее покрытие включает верхний слой покрытия, содержащий в качестве связующего водный раствор литиевого жидкого стекла,...
Тип: Изобретение
Номер охранного документа: 0002554183
Дата охранного документа: 27.06.2015
20.08.2015
№216.013.709a

Терморегулирующее покрытие на основе неорганического класса "истинный поглотитель"

Изобретение относится к области космического материаловедения, а именно к покрытиям пассивной терморегуляции класса «истинный поглотитель» («ИП»). Терморегулирующее покрытие класса «истинный поглотитель» выполнено из композиции, включающей неорганическое силикатное связующее и магнетит....
Тип: Изобретение
Номер охранного документа: 0002560396
Дата охранного документа: 20.08.2015
10.02.2016
№216.014.c474

Терморегулирующее покрытие класса "солнечный отражатель" для изделий из углепластика (варианты)

Изобретение относится к области космического материаловедения, а именно к терморегулирующим покрытиям класса «солнечные отражатели». Терморегулирующие покрытия класса «солнечный отражатель» выполнены на основе вариантов композиций, содержащих при определенных соотношениях водный раствор жидкого...
Тип: Изобретение
Номер охранного документа: 0002574620
Дата охранного документа: 10.02.2016
29.03.2019
№219.016.ef03

Композиция для терморегулирующего покрытия класса "солнечные отражатели"

Изобретение относится к области космического материаловедения и оптической техники и может быть использовано в системе пассивного терморегулирования космических аппаратов для изготовления покрытия холодной сушки класса «солнечные отражатели», которые наносят на внешние поверхности космических...
Тип: Изобретение
Номер охранного документа: 0002283332
Дата охранного документа: 10.09.2006
10.04.2019
№219.017.091c

Способ модифицирования жидкого стекла

Изобретение относится к способам модифицирования жидких стекол, которые могут быть применены для получения терморегулирующих покрытий, применяемых в авиационной, космической промышленностях, а также в других областях техники. Модифицируют калиевые, натриевые, литиевые или калиево-литиевые...
Тип: Изобретение
Номер охранного документа: 0002446100
Дата охранного документа: 27.03.2012
13.06.2019
№219.017.81dc

Терморегулирующее покрытие

Изобретение относится к терморегулирующим покрытиям, наносимым на наружную поверхность для поддержания определенного теплового режима космического аппарата. Описано терморегулирующее покрытие, выполненное из композиции, содержащей в качестве связующего амидосодержащую акриловую смолу в...
Тип: Изобретение
Номер охранного документа: 0002315794
Дата охранного документа: 27.01.2008
10.07.2019
№219.017.b177

Способ получения алюминатов бария

Изобретение относится к области химии. Алюминаты бария получают из оксида или гидроксида алюминия и оксида бария или гидроксида бария, которые спекают при 700-900°С в течение 4-8 часов. Алюминаты бария, полученные данным способом, соответствуют всем требованиям, предъявляемым к исходным...
Тип: Изобретение
Номер охранного документа: 0002466935
Дата охранного документа: 20.11.2012
+ добавить свой РИД