×
10.07.2019
219.017.ac0d

Результат интеллектуальной деятельности: СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах. Сплав по первому варианту содержит, мас.%: хром - 0,5-4,0, алюминий - 4,0-7,0, вольфрам - 12,0-16,0, тантал - 3,0-12,0, кобальт - 4,0-9,0, иттрий - 0,003-0,1, лантан - 0,001-0,1, церий - 0,003-0,1, никель - остальное и характеризуется высокой жаропрочностью. Для повышения жаропрочности, улучшения литейных свойств, технологической пластичности и повышения коррозионной стойкости сплав по второму варианту содержит, мас.%: хром - 0,5-4,0, алюминий - 4,0-7,0, титан ≤2,0, молибден ≤4,0, вольфрам - 12,0-16,0, тантал - 3,0-12,0, кобальт 4,0-9,0, ниобий ≤2,0, иттрий - 0,003-0,1, лантан - 0,001-0,1, церий - 0,003-0,1, углерод ≤0,1, никель - остальное. 2 н.п. ф-лы, 1 ил., 2 табл.

Изобретения относятся к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах.

Известен никелевый жаропрочный сплав для монокристального литья CMSX-2 содержащий (мас.%): хром - 8,0, кобальт 5,0, алюминий 5,6, вольфрам - 8,0, молибден - 0,6, тантал - 6,0, титан - 1,0, никель - остальное до 100%. («Труды международной научно-технической конференции 25-26 апреля 2006 г. М.: ВИАМ, 2006 г., с.43, табл.1) - аналог.

Недостатком данного решения является низкая жаропрочность, например, предел длительной прочности сплава σ1001000=214 МПа (Сборник «Литейные жаропрочные сплавы» под ред Каблова Е.Н. М.: Наука, 2006 г., с.74, табл.9).

Известен никелевый жаропрочный сплав ЖС-40, содержащий хром - 6,0, алюминий - 5,0-5,8, вольфрам - 6,0-7,8, тантал - 6,0-7,8, молибден - 3,5-4,8, кобальт - 5,0, ниобий - 0,05-0,50, никель - остальное до 100% («Литые лопатки газотурбинных двигателей». М., МИСИС, 2001 г., с.53, табл.2.3) - прототип.

Недостатком известного монокристального сплава с ориентацией [001] предназначенного для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температуре до 1000°С, также является недостаточная для заявляемой области применения жаропрочность (σ1001000≈240 МПа).

Техническим результатом, на достижение которого направлено заявляемое изобретение, является повышение жаропрочности никелевых сплавов для монокристального литья, например лопаток газотурбинных двигателей.

Заявляемый технический результат достигается тем, что никелевый жаропрочный сплав содержит хром, алюминий, вольфрам, тантал, кобальт, иттрий, церий, лантан и никель в следующем соотношении компонентов (мас.%):

хром - 0,5-4,0

алюминий - 4,0-7,0

вольфрам - 12,0-16,0

тантал - 3,0-12,0

кобальт - 4,0-9,0

иттрий - 0,003-0,1

лантан - 0,001-0,1

церий - 0,003-0,1

никель - остальное до 100%.

Известен никелевый жаропрочный сплав для монокристального литья CMSX-2, содержащий (мас.%): хром - 8,0, кобальт - 5,0, алюминий - 5,6, вольфрам - 8,0, молибден - 0,6, тантал - 6,0, титан - 1,0, никель - остальное до 100%. («Труды международной научно-технической конференции 25-26 апреля 2006 г. М.: ВИАМ, 2006 г., с.43, табл.1) - аналог.

Недостатком данного решения является низкая жаропрочность, например, предел длительной прочности сплава σ1001000=214 МПа. (Сборник «Литейные жаропрочные сплавы» под ред Каблова Е.Н. М.: Наука, 2006 г., с.74, табл.9).

Известен никелевый жаропрочный сплав ЖС-40, содержащий хром - 6,0, алюминий - 5,0-5,8, вольфрам - 6,0-7,8, тантал - 6,0-7,8, молибден - 3,5-4,8, кобальт - 5,0, ниобий - 0,05-0,50, никель - остальное до 100% («Литые лопатки газотурбинных двигателей». М., МИСИС, 2001 г., с.53, табл.2.3.) - прототип.

Недостатком известного монокристального сплава с ориентацией [001], предназначенного для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температуре до 1000°С, является недостаточная коррозионная стойкость, технологическая пластичность, а также недостаточная для заявляемой области применения жаропрочность (σ1001000≈240 МПа).

Техническим результатом, на достижение которого направлено заявляемое изобретение, является повышение жаропрочности никелевых сплавов для монокристального литья, например лопаток газотурбинных двигателей, улучшение литейных свойств сплава, его технологической пластичности и повышение коррозионной стойкости заявляемого сплава.

Указанный технический результат достигается тем, что никелевый жаропрочный сплав содержащий хром, алюминий, титан, молибден, вольфрам, тантал, кобальт, ниобий, иттрий, лантан, церий и никель, дополнительно содержит углерод, при следующем соотношении компонентов (мас.%):

хром - 0,5-4,0

алюминий - 4,0-7,0

титан ≤2,0

молибден ≤4,0

вольфрам - 12,0-16,0

тантал - 3,0-12,0

кобальт 4,0-9,0

ниобий ≤2,0

иттрий - 0,003-0,1

лантан - 0,001-0,1

церий - 0,003-0,1

углерод ≤0,1

никель - остальное до 100%.

Как известно, успехи в разработке высокожаропрочных никелевых сплавов последних поколений в значительной мере связаны с легированием сплавов большим количеством рения, например 9,3 мас.% в сплаве ЖС-47, и/или рутения, например, 6 мас.% в сплаве TMS-162 (Е.Н.Каблов, Н.В.Петрушин «Современные литые никелевые жаропрочные сплавы», Сборник трудов Международной технической конференции. М.: ВИАМ, 2006 г., с.43). Однако в связи с тем, что рений и особенно рутений являются очень дорогими и дефицитными металлами, возникает вопрос о том, полностью ли исчерпаны возможности улучшения жаропрочных сплавов, в том числе и никелевых, путем их легирования традиционными, менее дорогими и более доступными элементами, например, такими как вольфрам, тантал и другими.

Авторами проведен анализ системы легирования жаропрочных никелевых сплавов с точки зрения значений энергии связи (энергии когезии) легирующих элементов. Рассматривая энергию связи элементов фундаментальным параметром, определяющим уровень механических свойств и эксплуатационных характеристик материала, установлено распределение легирующих элементов жаропрочных сплавов по значениям энергии связи для обобщенной системы легирования никелевых жаропрочных сплавов: Ni, Со, Cr, V, Ti, Al, Ru, Mo, Nb, Zr, Hf, Та, W, Re, Os, Ir.

Полученная диаграмма распределения легирующих элементов по значениями энергии связи (энергии когезии) приведена на чертеже.

При анализе приведенных на диаграмме данных будем предполагать, что вклад в энергию связи сплава конкретного легирующего элемента, например тантала, прямо пропорционален величине его собственной энергии связи и содержанию данного элемента в сплаве в атомных процентах. При этом обязательно наличие в сплаве основного γ'-образующего элемента - алюминия, причем его содержание позволяет обеспечивать образование необходимого количества упрочняющей γ'-фазы, выделяющейся при распаде пересыщенного твердого раствора.

С учетом вышеизложенного, базовой системой никелевых жаропрочных сплавов будем считать Ni-Al с возможностью замещения некоторого количества алюминия титаном.

Результаты, представленные на диаграмме, показывают, что первым элементом, способствующим наибольшему повышению энергии связи никеля, следует считать вольфрам. Поэтому базовая система никелевых жаропрочных сплавов в первую очередь должна содержать вольфрам, причем его количество целесообразно держать на максимально возможном высоком уровне, когда его предельное содержание ограничено величиной растворимости вольфрама в никелевом сплаве. При этом следует иметь в виду, что замена вольфрами танатлом или рением нецелесообразна, так как когезивная прочность сплава при такой замене повышаться не будет.

Следующий элемент для легирования никелевых жаропрочных сплавов - тантал. Тантал целесообразно вводить в жаропрочные сплавы на фоне высокого содержания вольфрама, контролируя возможность выделения в сплаве Та-содержащих промежуточных фаз.

Использование принципа многокомпонентного легирования в данном случае целесообразно потому, что это позволяет увеличить в жаропрочных сплавах суммарное содержание легирующих элементов с высокой когезивной прочностью, обеспечивая максимальное упрочнение всего сплава.

При анализе диаграммы, представленной на чертеже, обращает на себя внимание следующее: обязательный компонент последних модификаций жаропрочных сплавов - рутений, почти аналогичен молибдену. Среди γ'-образующих элементов, которые могут способствовать повышению когезивной прочности жаропрочных сплавов, кроме уже рассмотренного тантала, следует отметить титан и ниобий.

На основе вышеизложенного авторами были разработаны заявляемые сплавы.

Особенностью заявляемого сплава по первому варианту (КС-1) является высокое содержание вольфрама в пределах от 12,0 до 16,0 мас.%. Верхний предел содержания вольфрама ограничивает область концентраций, при выходе за которую возрастает вероятность выделения вольфрама из твердого раствора в виде α-фазы, которая не является таким эффективным упрочнителем, как γ'-фаза на основе Ni3Al, а при содержании вольфрама ниже 12 мас.% его стабилизирующее воздействие на структуру и благоприятное влияние на жаропрочность ослабляется.

Заявляемое количество тантала вводится в состав никелевого жаропрочного сплава на фоне высокого содержания вольфрама. Система легирования заявляемого сплава (КС-1) сбалансирована таким образом, чтобы в сплаве не происходило выделения α-фазы несмотря на то, что тантал так же, как и вольфрам имеет ОЦК решетку. Влияние тантала на свойства заявляемого сплава во многом сходно с влиянием вольфрама, тантал также характеризуется высокой когезивной прочностью, что характерно и для заявляемого в заданном соотношении компонентов сплава. Тантал распределяется между γ-матрицей и упрочняющей γ'-фазой, стабилизируя и упрочняя обе основные фазы жаропрочного сплава. При содержании тантала больше 10 мас.% возрастает вероятность его выпадения из твердого раствора в виде интерметаллидов Ni-Ta, а при содержании - меньше 5 мас.% его воздействие на свойства заметно снижается.

Введение в заявляемый состав жаропрочного сплава заявляемого количества хрома обусловлено необходимостью повышения его жаростойкости. При увеличении содержания хрома выше 4 мас.% возрастает вероятность образования топологически-плотноупакованной (ТПУ) фазы на основе хрома, которая охрупчивает сплав.

Легирование сплава кобальтом в заявляемых количествах обусловлено необходимостью улучшения технологических характеристик сплава - технологической пластичности и литейных свойств, а также стойкости к коррозии.

Система микролегирующих добавок, а именно совместное использование лантана, иттрия и церия в заявляемых количествах, обеспечивает стабилизацию структурных дефектов в монокристаллах заявляемого сплава, а совместно с остальными компонентами состава сплава обеспечивает повышение жаропрочности по сравнению с прототипом.

Особенностью заявляемого сплава по второму варианту является аналогичность влияния вольфрама, тантала, кобальта и системы микролегирующих добавок (иттрий, лантан и церий), но кроме этого на свойства заявляемого сплава по второму варианту влияет наличие в его составе титана, молибдена, ниобия и углерода.

Алюминий и титан - это основные γ' образующие элементы, количество которых, с одной стороны, обеспечивает образование необходимого содержания упрочняющей γ'-фазы, а с другой стороны, ограничивает объем избыточной эвтектики (γ'+γ) и способствует повышению коррозионной стойкости сплава.

Ниобий и молибден обеспечивают повышение долговечности материала в области температур ≈1000°С. Углерод вводится в состав сплава для образования второй упрочняющей фазы жаропрочных сплавов - карбидов. Суммарное содержание в заявляемом сплаве углерода и карбидообразующих элементов обеспечивает отсутствие охрупчивающих ТПУ фаз.

Заявляемый состав жаропрочного никелевого сплава по второму варианту в количественном и качественном составе обеспечивает наряду с повышением жаропрочности, улучшением литейных свойств сплава и его технологической пластичности и повышение коррозионной стойкости.

Примеры конкретного выполнения.

Для апробации результатов были отлиты сплавы по первому и второму вариантам. Отливка сплавов осуществлялась в вакуумно-индукционной печи «Кристалл» емкостью 5-10 кг. Порядок введения компонентов заявляемых составов сплавов является стандартным: никель, хром, кобальт, вольфрам, молибден, тантал, углерод, плавление, раскисление углеродом, последующее введение титана, алюминия и микролегирующих добавок (элементы с высокой активностью к кислороду) и разливка.

Для апробации сплава по первому варианту были выплавлены два состава сплава (один заявляемый и один сплав-прототип - ЖС-40), содержащих компоненты (в мас.%), приведенные в Таблице 1.

Монокристальная структура, ориентация оси роста [001].

Таблица 1.
№ п/пКомпоненты состава сплавов
CrAlWТаСоYLaСеNi
Заявляемый сплав3,35,1916,06,36,00,020,020,02Ост.
ЖС-406,05,46,56,55,0Nb-0,3Mo-4,0-Ост.

После чего литые образцы, подвергнутые высокотемпературной газостатической обработке (заявляемый сплав) и термической обработке, испытывались.

Результаты испытаний.

Сплав ЖС-40 (прототип):

Т=900°С, σ100=440 МПа, σ500=350 МПа,

Т=1000°С, σ100=240 МПа, σ500=190 МПа (Сборник «Литейные жаропрочные сплавы» под ред. Каблова Е.Н. М.: Наука, 2006 г., с.54, табл.2.4).

Заявляемый сплав.

Т=900°С, σ100=467 МПа, σ500=371 МПа,

Т=1000°С, σ100=255 МПа, σ500=201 МПа

Для апробации сплава по второму варианту были выплавлены два состава сплава (один заявляемый и один сплав-прототип - ЖС-40), содержащих компоненты (в мас.%), приведенные в Таблице 2.

№ п/пКомпоненты состава сплавов
CrAlWТаСоYLaССеTiMoNbNi
Заявляемый сплав2,35,216,56,74,90,020,020,0170,020,50,10,3Ост.
ЖС-406,05,46,56,55,0Nb-0,3----4,20,4Ост.

После чего литые образцы, подвергнутые высокотемпературной газостатической обработке (заявляемый сплав) и термической обработке, испытывались.

Результаты испытаний.

Сплав ЖС-40 (прототип):

Т=900°С, σ100=440 МПа, σ500=350 МПа,

Т=1000°С, σ100=240 МПа, σ500=190 МПа

Заявляемый сплав.

Т=900°С, σ100=471 МПа, σ500=379 МПа,

Т=1000°С, σ100=252 МПа, σ500=200 МПа.

Введение дополнительных легирующих элементов в заявляемый сплав по второму варианту приводит к уменьшению литейной пористости в междендритных областях сплава: объемная доля пор уменьшается на 20-30% по сравнению с прототипом. Известно, что на литейных порах может происходить образование микротрещин, способных превращаться в магистральные трещины при разрушении деталей.

Приведенные результаты испытаний показывают, что по сравнению с прототипом заявляемые сплавы по первому и второму вариантам обеспечивают достижение заявленного технического результата.

хром0,5-4,0алюминий4,0-7,0вольфрам12,0-16,0тантал3,0-12,0кобальт4,0-9,0иттрий0,003-0,1лантан0,001-0,1церий0,003-0,1никельостальноеc0c1211none586хром0,5-4,0алюминий4,0-7,0титан≤2,0молибден≤4,0вольфрам12,0-16,0тантал3,0-12,0кобальт4,0-9,0ниобий≤2,0иттрий0,003-0,1лантан0,001-0,1церий0,003-0,1углерод≤0,1никельостальноеc0c1211none7881.Составжаропрочногоникелевогосплавадлямонокристальноголитья,содержащийникель,хром,кобальт,вольфрам,алюминийитантал,отличающийсятем,чтоондополнительносодержититтрий,лантаницерийприследующемсоотношениикомпонентов,мас.%:12.Составжаропрочногоникелевогосплавадлямонокристальноголитья,содержащийникель,хром,кобальт,вольфрам,алюминий,тантал,ниобийимолибден,отличающийсятем,чтоондополнительносодержититтрий,лантан,церий,титаниуглеродприследующемсоотношениикомпонентов,мас.%:2
Источник поступления информации: Роспатент

Showing 41-50 of 52 items.
09.06.2019
№219.017.7bc9

Устройство для поджига и стабилизации горения твердого топлива

Изобретение относится к устройствам для поджига и стабилизации горения твердого топлива в теплоэнергетических установках, например в газификаторах или котельных агрегатах. Устройство для поджига и стабилизации горения твердого топлива содержит кожух с охлаждаемой рубашкой, соединенной с...
Тип: Изобретение
Номер охранного документа: 0002301375
Дата охранного документа: 20.06.2007
09.06.2019
№219.017.7c53

Материал для ремонта чугунных и стальных изделий

Изобретение относится к машиностроению, в частности к газотурбинному, и может быть использовано для устранения дефектов в литых деталях, для ремонта трещин и выравнивания поверхности. По первому варианту материал содержит основу в виде стекла натриевого жидкого и наполнитель, содержащий...
Тип: Изобретение
Номер охранного документа: 0002360778
Дата охранного документа: 10.07.2009
09.06.2019
№219.017.7cb2

Насосный агрегат

Изобретение относится к насосным агрегатам для подачи топлива в силовую установку летательного аппарата. Насосный агрегат содержит корпус со статором и ротор, включающий приводной вал (ПВ) и размещенные на нем насос постоянной производительности и насос переменной производительности. Насос...
Тип: Изобретение
Номер охранного документа: 0002327903
Дата охранного документа: 27.06.2008
09.06.2019
№219.017.7cef

Шихта для изготовления огнеупорных изделий

Изобретение относится к производству огнеупорных изделий, а именно к составам для изготовления элементов футеровок, используемых в конструкции вагонеток туннельных печей для обжига керамических изделий, а также огнеупорных изделий, применяемых, в частности, при литье лопаток из жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002412133
Дата охранного документа: 20.02.2011
09.06.2019
№219.017.8072

Энергетическая установка

Изобретение относится к теплоэнергетике, в частности к энергетическим установкам. Энергетическая установка, содержащая снабженную выходом на полезную нагрузку парогазовую установку с вводом пара, выход которой подключен к первому входу подогревателя, первый выход которого подключен к первому...
Тип: Изобретение
Номер охранного документа: 02190104
Дата охранного документа: 27.09.2002
19.06.2019
№219.017.85ae

Способ обработки отливок из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано, в частности, для изготовления рабочих лопаток газотурбинных двигателей и других узлов и деталей, работающих в диапазоне температур до 1000°С. Техническим результатом изобретения является повышение предела выносливости и прочностных...
Тип: Изобретение
Номер охранного документа: 0002344195
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.85b4

Способ получения никелевого жаропрочного сплава

Изобретение относится к металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей, работающих в условиях высоких температур и напряжений. Техническим результатом является повышение длительной (сточасовой)...
Тип: Изобретение
Номер охранного документа: 0002344188
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.8721

Прирабатываемое покрытие элемента турбомашины и способ его изготовления

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях высоких температур и высокочастотных вибраций. Техническим результатом изобретения является улучшение эксплуатационных свойств покрытия, а именно повышение...
Тип: Изобретение
Номер охранного документа: 0002353779
Дата охранного документа: 27.04.2009
19.06.2019
№219.017.8808

Колосниковая решетка

Изобретение относится к области энергетики, в частности, к устройствам для сжигания твердого топлива. Колосниковая решетка устройства для сжигания твердого топлива содержит плиту со сквозными пазами, образованными вставками из жаропрочного материала. Плита выполнена в виде несущей подложки,...
Тип: Изобретение
Номер охранного документа: 0002300704
Дата охранного документа: 10.06.2007
10.07.2019
№219.017.ac11

Состав жаропрочного никелевого сплава для монокристального литья (варианты)

Изобретение относится к металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для производства монокристальных рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах, превышающих 1000°С. Согласно первому варианту сплав имеет...
Тип: Изобретение
Номер охранного документа: 0002348725
Дата охранного документа: 10.03.2009
Showing 41-50 of 87 items.
27.04.2019
№219.017.3dfc

Способ ремонта лопаток турбинных машин

Изобретение относится к ремонтному производству и может быть использовано для восстановления лопаток турбинных машин. Определяют линию ремонтного сечения лопатки, по которой удаляют дефектную часть. Пристыковывают платики к боковым сторонам лопатки. Причем одну из сторон каждого платика...
Тип: Изобретение
Номер охранного документа: 0002316418
Дата охранного документа: 10.02.2008
27.04.2019
№219.017.3dfd

Способ обработки деталей

Изобретение относится к машиностроению, в частности к бесконтактной магнитоимпульсной обработке деталей газотурбинных двигателей, работающих в агрессивных высокотемпературных средах в условиях знакопеременных нагрузок. Для повышения технологичности обработки за счет возможности формирования...
Тип: Изобретение
Номер охранного документа: 0002316602
Дата охранного документа: 10.02.2008
27.04.2019
№219.017.3dfe

Способ производства заготовок из порошковых сплавов

Изобретение относится к порошковой металлургии, в частности к производству заготовок из порошковых жаропрочных никелевых сплавов. Может использоваться для изготовления деталей, стойких к окислению при повышенных температурах и работающих в условиях тяжелого нагружения. Порошковый материал...
Тип: Изобретение
Номер охранного документа: 0002316413
Дата охранного документа: 10.02.2008
27.04.2019
№219.017.3dff

Способ восстановления гребешков лабиринтных уплотнений лопаток турбомашин

Изобретение относится к наплавке гребешков лабиринтных уплотнений лопаток турбомашин и может быть использовано в авиационной промышленности и энергомашиностроении. Устанавливают лопатки турбомашин в положение, обеспечивающее подвод к ним сварочной головки. Между гребешками лабиринтных...
Тип: Изобретение
Номер охранного документа: 0002317182
Дата охранного документа: 20.02.2008
27.04.2019
№219.017.3e00

Способ определения дефектов в изделии методом теплового неразрушающего контроля

Изобретение относится к контрольно-диагностическим технологиям. Способ включает нагрев изделия, его последующее охлаждение, измерение температуры изделия и определение темпа охлаждения для каждой элементарной площадки поверхности изделия. Охлаждение осуществляют рабочей средой, в качестве...
Тип: Изобретение
Номер охранного документа: 0002315983
Дата охранного документа: 27.01.2008
29.04.2019
№219.017.40cf

Способ наведения луча электронно-лучевой пушки на состыкованные поверхности свариваемых заготовок

Изобретение относится к способу наведения луча электронно-лучевой пушки на состыкованные поверхности свариваемых заготовок и может быть использовано при изготовлении любых ответственных деталей газотурбинных двигателей, где необходимо точное выдерживание геометрических размеров деталей после...
Тип: Изобретение
Номер охранного документа: 0002393069
Дата охранного документа: 27.06.2010
29.04.2019
№219.017.40f9

Способ изготовления блинга газотурбинного двигателя электронно-лучевой сваркой

Изобретение относится к области электронно-лучевой сварки, в частности к способу изготовления блинга газотурбинного двигателя электронно-лучевой сваркой. Способ изготовления блинга газотурбинного двигателя электронно-лучевой сваркой из заготовок в виде лопаток с хвостовиками и с элементами...
Тип: Изобретение
Номер охранного документа: 0002395376
Дата охранного документа: 27.07.2010
09.05.2019
№219.017.4c03

Состав литейного жаропрочного сплава на основе никеля

Изобретение относится к области металлургии. Состав литейного жаропрочного сплава на основе никеля содержит компоненты при следующем соотношении, мас.%: хром - 3,0-7,0, кобальт - 4,0-8,5, углерод - 0,1-0,2, вольфрам - 11,5-15,0, алюминий - 4,8-5,8, ниобий - 0,4-1,0, титан - 2,0-3,0, молибден -...
Тип: Изобретение
Номер охранного документа: 0002344190
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.53e9

Способ получения литого сплава в режиме горения

Изобретение относится к области металлургии, а именно к получению литых сплавов на основе кобальта, которые могут быть использованы в авиационной промышленности для конструктивного упрочнения бандажных полок в лопатках газотурбинных двигателей. Предложен способ литого сплава в режиме горения....
Тип: Изобретение
Номер охранного документа: 0002270877
Дата охранного документа: 27.02.2006
18.05.2019
№219.017.53f1

Способ получения литого оксидного материала и материал, полученный этим способом

Изобретение относится к области металлургии, а именно к способам получения литых оксидных материалов на основе оксида кремния, которые могут быть использованы для получения керамических стержней сложной конфигурации для литья лопаток газотурбинных двигателей. Предложен способ получения литого...
Тип: Изобретение
Номер охранного документа: 0002270878
Дата охранного документа: 27.02.2006
+ добавить свой РИД