×
29.06.2019
219.017.9e57

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу приготовления катализаторов крекинга. Описан способ приготовления микросферического катализатора крекинга, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита в две стадии в среде водяного пара, смешение цеолита с компонентами матрицы и получением композиции, распылительную сушку полученной композиции из цеолита и компонентов матрицы с последующей прокалкой и получением катализатора. На первой стадии ультрастабилизацию цеолита проводят при температуре 550-650°С и парциальном давлении паров воды в диапазоне от 0,1 до 1,0 атм. На второй стадии ультрастабилизацию осуществляют после распылительной сушки при прокалке композиции из цеолита и компонентов матрицы при температуре 650-750°С и парциальном давлении паров воды в диапазоне от 0,05 до 0,3 атм. Способ позволяет получить цеолит с высоким решеточным модулем и высокой относительной кристалличностью. Технический результат - получение катализатора с высокой каталитической активностью. 5 з.п., ф-лы, 1 табл.

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу приготовления катализаторов крекинга.

Известны катализаторы крекинга на основе ультрастабильного цеолита с повышенным решеточным модулем, которые обладают несколькими существенными преимуществами по сравнению с катализаторами на основе цеолитов в редкоземельной или смешанной катион-декатионированной форме:

- катализаторы обладают высокой термостабильностью и незначительно изменяют свои каталитические свойства в ходе эксплуатации;

- бензин крекинга, полученный на таких катализаторах, обладает высокими октановыми характеристиками.

Известен способ получения катализатора крекинга на основе ультрастабильного цеолита, каолина, источников оксидов алюминия и кремния [US 6114267, B01J 29/06, 05.09.2000]. В указанном способе ультрастабилизацию цеолита осуществляют с применением гексафторсиликата аммония. Решеточный модуль цеолита при этом составил 12,5 и содержание редкоземельных элементов 4 мас.%. Недостатком указанного способа является снижение кристалличности цеолита при взаимодействии с гексафторсиликатом аммония и низкая активность получаемого на основе такого цеолита катализатора.

Известен способ приготовления катализаторов крекинга на основе ультрастабильного цеолита типа Y, аморфного алюмосиликата и каолина [US 4826793, B01J 29/38, 02.05.1989; 3957689, B01J 29/06, 18.05.1976; 3402996, B01J 29/08, 24.09.1968]. Ультрастабилизацию аммонийной формы цеолита проводят в среде водяного пара при температурах от 538 до 816°С с получением цеолита, имеющего решеточный модуль в диапазоне от 7,0 до 12,0. Недостатком указанного способа является снижение кристалличности цеолита при его ультрастабилизации и низкая активность получаемого катализатора.

Известен способ приготовления цеолитсодержащего катализатора для крекинга нефтяных фракций с применением ультрастабильного цеолита, в котором ультрастабилизации подвергают цеолит в катион-декатионированной форме при температуре 500-550°С и парциальном давлении паров воды ниже 0,8 атм. [РФ 2127632, B01J 29/08, 20.03.1999]. Недостатком указанного способа является низкий решеточный модуль получаемого цеолита и, соответственно, его невысокие термостабильные и каталитические свойства.

Задачей, на решение которой направлено предлагаемое изобретение, является сохранение кристалличности цеолита NaY при его ультрастабилизации в среде водяного пара и получение катализатора с высокой каталитической активностью. Относительную кристалличность цеолита и его решеточный модуль определяют методом рентгенофазового анализа.

Задача решается способом ультрастабилизации цеолита в среде водяного пара, при котором ультрастабилизацию проводят в две стадии:

- на первой стадии ультрастабилизации в среде водяного пара подвергают непосредственно цеолит;

- на второй стадии осуществляют ультрастабилизацию цеолита в составе матрицы катализатора при прокалке готового катализатора.

Первую стадию ультрастабилизации цеолита осуществляют в мягких условиях с сохранением относительной кристалличности цеолита не менее 95% с получением решеточного модуля цеолита в диапазоне от 5,5 до 7,5. После смешения цеолита с компонентами матрицы, распылительной сушки полученной композиции проводят ультрастабилизацию цеолита в среде водяного пара в более жестких условиях с получением цеолита с решеточным модулем в диапазоне от 7,5 до 20. Ультрастабилизация цеолита в составе катализатора при жестких условиях позволяет сохранить относительную кристалличность на уровне 95%.

Предлагаемый способ осуществляют следующим образом. Предварительно готовят компоненты матрицы катализатора:

- аморфный алюмосиликат с содержанием оксида натрия менее 0,2 мас.% и оксида алюминия 6-25 мас.%;

- переосажденный гидроксид алюминия с содержанием оксида натрия менее 0,1 мас.%;

- бентонитовая глина следующего химического состава, мас.%:

оксид натрия менее0,5
оксид алюминия16,0-26,0
оксид магния2,5-4,0
оксид кальция1,5-3,0
оксид кремнияостальное

Содержание монтмориллонита (основное вещество) в бентонитовой глине должно составлять не менее 95%.

Ультрастабильный цеолит готовят следующим образом. Цеолит NaY подвергают двухступенчатому ионному обмену на катионы аммония и редкоземельные катионы из растворов их азотнокислых солей с промежуточной фильтрацией и промывкой. Ионный обмен осуществляют таким образом, чтобы цеолит имел следующий химический состав, мас.%:

оксид натрия от2,5-4,0
оксиды редкоземельных элементов0,5-6,0

Цеолит подвергают ультрастабилизации в среде водяного пара при следующих условиях:

температура550-650°С
парциальное давление паров воды0,1-1,0 атм.
продолжительность ультрастабилизации1-6 ч

В результате ультрастабилизации получают цеолит с решеточным модулем в диапазоне от 5,5 до 7,5 и относительной кристалличностью не менее 95%. Ультрастабильный цеолит смешивают с водой и получают цеолитную суспензию.

Суспензию указанных компонентов матрицы смешивают с суспензией ультрастабильного цеолита. Полученную композицию формуют методом распылительной сушки. Средний размер частиц составляет от 70 до 75 микрон. Высушенный катализатор подвергают прокалке в воздухе или дымовых газах при температуре 450-550°С.Прокаленный катализатор подвергают высокотемпературной прокалке в среде водяного пара при следующих условиях:

температура650-750°С
парциальное давление паров воды0,05-0,3 атм.
продолжительность ультрастабилизации1-12 ч

В результате ультрастабилизации получают катализатор, в котором цеолит имеет решеточный модуль в диапазоне от 7,5 до 20,0 с относительной кристалличностью не менее 95%.

Сущность изобретения иллюстрируется следующими примерами.

Примеры 1-2 характеризуют известный способ приготовления микросферического катализатора крекинга на основе ультрастабильного цеолита.

Примеры 3-9 характеризуют предлагаемый способ приготовления микросферического катализатора крекинга на основе ультрастабильного цеолита.

Пример 1.

Суспензию 25 г цеолита NaY с решеточным модулем 4,8 с содержанием цеолита в суспензии 100 г/л подвергают ионному обмену на катионы аммония из раствора азотнокислого аммония таким образом, чтобы соотношение г-экв аммония и натрия составляет 1,0. Температура ионного обмена - комнатная, продолжительность ионного обмена составляет 3 ч. Осуществляют фильтрацию цеолита после первого ионного обмена и промывку свежей водой. Остаточное содержание оксида натрия составляет 7 мас.%. Осуществляют второй ионный обмен на азотнокислый аммоний при соотношении 2,0 г-экв азотнокислого аммония на г-экв оксида натрия в цеолите. Температура ионного обмена составляет 60°С, продолжительность обмена - 3 ч. Осуществляют фильтрацию цеолита после второго ионного обмена и промывку подогретой свежей водой. Остаточное содержание оксида натрия - 4,3 мас.%.

Проводят ультрастабилизацию цеолита при температуре 550°С в течение 4 ч в среде водяного пара при парциальном давлении паров воды, равном 0,5 атм.

Полученный цеолит имеет решеточный модуль 5,8, относительная кристалличность цеолита составляет 95%.

Готовят суспензию 25 г цеолита в 250 г воды. Полученный цеолит подвергают третьему ионному обмену на катионы редкоземельных элементов из раствора смеси их нитратов при соотношении г-экв редкоземельных элементов и натрия, равном 1,5. Суспензию цеолита фильтруют и промывают свежей водой. Содержание оксидов редкоземельных элементов в цеолите - 9,1 мас.%. Остаточное содержание оксида натрия составляет 1,8 мас.%.

Осадок цеолита с фильтра репульпируют. Полученную суспензию цеолита смешивают с суспензиями следующих компонентов:

- аморфный алюмосиликат с содержанием оксида натрия 0,2 мас.% и оксида алюминия 11 мас.%,

- переосажденный гидроксид алюминия с содержанием оксида натрия 0,1 мас.%,

- бентонитовая глина следующего химического состава, мас.%:

оксид натрия0,35
оксид алюминия24,0
оксид магния3,5
оксид кальция2,5.

Суспензии смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас.%:

цеолит20
оксид алюминия из переосажденного гидроксида алюминия20
бентонитовая глина22
аморфный алюмосиликат38

Катализатор формуют методом распылительной сушки и прокаливают в воздухе с парциальным давлением паров воды 0,1 атм. при температуре 650°С в течение 3 ч. Решеточный модуль цеолита в готовом катализаторе составляет 6,2, относительная кристалличность цеолита - 95%. Содержание оксидов редкоземельных элементов в катализаторе - 1,82 мас.%.

Известный способ приготовления катализатора не обеспечивает получения высокого решеточного модуля цеолита в готовом катализаторе.

Пример 2.

Отличие от примера 1 заключается в применении на стадии прокалки катализатора температуры 750°С и парциального давления паров воды, равного 0,2 атм. Решеточный модуль цеолита в готовом катализаторе составляет 8,2, относительная кристалличность цеолита - 76%. Содержание оксидов редкоземельных элементов в катализаторе - 1,82 мас.%.

Известный способ приготовления катализатора не обеспечивает сохранения кристалличности цеолита при указанных условиях прокалки.

Пример 3.

Приготовление цеолита проводят, как в примере 1. Отличие заключается в том, что ультрастабилизацию цеолита проводят при температуре 560°С, продолжительности ультрастабилизации 3 ч в среде водяного пара при парциальном давлении паров воды, равном 1,0 атм.

Полученный цеолит имеет решеточный модуль 6,5, относительная кристалличность цеолита составляет 95%.

Третий ионный обмен проводят, как в примере 1. Содержание оксидов редкоземельных элементов в цеолите составляет 9,7 мас.%. Остаточное содержание оксида натрия в цеолите - 1,3 мас.%.

Приготовление катализаторной композиции и формовку катализатора проводят, как в примере 1. Содержание редкоземельных элементов в катализаторе - 1,94 мас.%.

Отличие заключается в условиях прокалки катализатора в среде водяного пара. Прокалку катализатора проводят при температуре 710°С в течение 3 ч и парциальном давлении паров воды 0,2 атм. Решеточный модуль цеолита в готовом катализаторе составляет 10,5 при относительной кристалличности 93%. Предлагаемый способ позволяет достичь высокого решеточного модуля цеолита при сохранении его относительной кристалличности.

Пример 4.

Приготовление цеолита проводят, как в примере 1. Отличие заключается в том, что ультрастабилизацию цеолита проводят при температуре 580°С, в течение 4 ч в среде водяного пара при парциальном давлении паров воды, равном 0,2 атм.

Полученный цеолит имеет решеточный модуль 7,5 при относительной кристалличности 94%. Содержание оксидов редкоземельных элементов в цеолите составляет 10,3 мас.%. Остаточное содержание оксида натрия - 1,2 мас.%.

Приготовление катализаторной композиции и формовку катализатора проводят, как в примере 1. Отличие заключается в условиях высокотемпературной прокалки катализатора в среде водяного пара.

Высокотемпературную прокалку катализатора в среде водяного пара проводят при температуре 730°С в течение 3 ч и парциальном давлении паров воды 0,1 атм. Решеточный модуль цеолита в готовом катализаторе составляет 19,2 при относительной кристалличности 92%.

Предлагаемый способ позволяет достичь высокого решеточного модуля цеолита при сохранении его относительной кристалличности.

Пример 5.

Суспензию 25 г цеолита NaY с решеточным модулем 4,8 с содержанием цеолита в суспензии 100 г/л подвергают ионному обмену на катионы аммония из раствора азотнокислого аммония таким образом, чтобы соотношение г-экв аммония и натрия составляло 1,5. Температура ионного обмена - комнатная, продолжительность ионного обмена составляет 3 ч. Осуществляют фильтрацию цеолита после первого ионного обмена и промывку свежей водой. Остаточное содержание оксида натрия - 5,8 мас.%. Осуществляют второй ионный обмен на катионы аммония и катионы редкоземельных элементов из азотнокислых солей при соотношении 2,0 г-экв азотнокислого аммония на г-экв оксида натрия в цеолите и 0,5 г-экв редкоземельных элементов на г-экв оксида натрия в цеолите. Температура ионного обмена составляет 90°С, продолжительность обмена - 3 ч. Осуществляют фильтрацию цеолита после второго ионного обмена и промывку подогретой свежей водой. Проводят ультрастабилизацию цеолита при температуре 650°С в течение 3 ч в среде водяного пара при парциальном давлении паров воды, равном 0,2 атм.

Полученный цеолит имеет решеточный модуль 8,5 при относительной кристалличности 92%.

Готовят суспензию 25 г цеолита в 250 г воды. Полученный цеолит подвергают третьему ионному обмену на катионы редкоземельных элементов при соотношении г-экв редкоземельных элементов и натрия, равном 1,0. Суспензию цеолита фильтруют и промывают свежей водой. Содержание оксидов редкоземельных элементов в цеолите составляет 14,3 мас.%. Остаточное содержание оксида натрия - 0,8 мас.%

Приготовление катализаторной композиции и формовку катализатора проводят, как в примере 1. Отличие заключается в условиях высокотемпературной прокалки катализатора в среде водяного пара.

Высокотемпературную прокалку катализатора проводят при температуре 750°С в течение 6 ч и парциальном давлении паров воды 0,05 атм. Решеточный модуль цеолита в готовом катализаторе составляет 15,7 при относительной кристалличности 91%. Содержание оксидов редкоземельных элементов в катализаторе составляет 2,9 мас.%

Предлагаемый способ позволяет достичь высокого решеточного модуля цеолита при сохранении его высокой относительной кристалличности.

Пример 6.

Приготовление цеолита проводят, как в примере 5. Отличие заключается в соотношении г-экв редкоземельных элементов и натрия в цеолите на втором ионном обмене. Соотношение г-экв редкоземельных элементов и натрия в цеолите на втором ионном обмене в данном примере поддерживают равным 0,1. Содержание оксидов редкоземельных элементов в цеолите составляет 1,3 мас.% Остаточное содержание оксида натрия в цеолите - 3,2 мас.%

Ультрастабилизацию цеолита и высокотемпературную прокалку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе составил 19,2 при относительной кристалличности 89%. Содержание оксидов редкоземельных элементов в катализаторе составляет 2,9 мас.%. Остаточное содержание оксида натрия в катализаторе 0,26 мас.%

При низких содержаниях оксидов редкоземельных элементов в цеолите и высоких температурах при прокалке катализатора в среде водяного пара получают цеолит с высоким решеточным модулем, но с пониженной относительной кристалличностью.

Пример 7. Приготовление цеолита проводят, как в примере 5. Отличие заключается в компонентном составе катализатора. Суспензии компонентов смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас.%:

цеолит20
оксид алюминия из переосажденного гидроксида алюминия30
бентонитовая глина22
аморфный алюмосиликат28

Высокотемпературную прокалку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе составляет 12,4 при относительной кристалличности 89%.

Таким образом, увеличение содержания оксида алюминия в катализаторе уменьшает степень ультрастабилизации цеолита, но приводит к снижению кристалличности цеолита в готовом катализаторе.

Пример 8.

Приготовление цеолита проводят, как в примере 5. Отличие заключается в компонентном составе. Суспензии компонентов смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас.%:

цеолит20
оксид алюминия из переосажденного гидроксида алюминия20
бентонитовая глина35
аморфный алюмосиликат25

Высокотемпературную прокалку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе составляет 14,2, относительная кристалличность цеолита - 93%.

Таким образом, увеличение содержания бентонитовой глины алюминия увеличивает степень ультрастабилизации и позволяет сохранить высокую кристалличность цеолита в готовом катализаторе.

Пример 9.

Приготовление цеолита проводят, как в примере 5. Отличие заключается в компонентном составе. Суспензии компонентов смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имеет следующий компонентный состав, мас.%:

цеолит25
оксид алюминия из переосажденного гидроксида алюминия20
бентонитовая глина22
аморфный алюмосиликат33

Высокотемпературную обработку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе - 12,4, относительная кристалличность цеолита - 82%. Содержание оксидов редкоземельных элементов в катализаторе составляет 3,0 мас.%.

Таким образом, увеличение содержания цеолита за счет снижения содержания аморфного алюмосиликата приводит к снижению кристалличности цеолита в готовом катализаторе.

Активность полученных образцов оценивают в крекинге гидроочищенного вакуумного газойля с пределами кипения 350-560°С при весовой скорости подачи сырья 30 ч-1, температуре крекинга 526°С, весовом соотношении катализатор: сырье, равном 4 и временем подачи сырья 30 с. Условия испытаний соответствуют ASTM D-3907. Активность при этом оценивают как степень превращения сырья в приведенных стандартных условиях. Катализаторы перед испытанием обрабатывают 100% водяным паром при температуре 760°С в течение 5 ч.

Химический состав катализатора и результаты испытаний активности приведены в таблице.

Заявляемый способ приготовления микросферического цеолитсодержащего катализатора крекинга позволяет получить высокоактивные катализаторы с ультрастабильным цеолитом, решеточный модуль цеолита при этом составляет от 5,5 до 20,0.

Таблица
Номер примераСодержание оксида натрия, мас.%Содержание оксидов РЗЗ, мас.%Содержание оксида алюминия, мас.%Активность катализатора, мас.%
10,531,8233,472,3
20,531,8233,469,4
30,421,9433,476,8
40,382,0633,479,4
50,312,8633,482,7
60,262,9033,479,6
70,292,8642,678,0
80,372,8635,578,8
90,383,0034,476,9

1.Способприготовлениямикросферическогокатализаторадлякрекинганефтяныхфракций,включающийпроведениеионныхобменовнакатионыредкоземельныхэлементовиаммониянацеолитеNaY,ультрастабилизациюцеолитавсредеводяногопара,смешениецеолитаскомпонентамиматрицыиполучениемкомпозиции,распылительнуюсушкуполученнойкомпозицииизцеолитаикомпонентовматрицыспоследующейпрокалкойиполучениемкатализатора,отличающийсятем,чтоультрастабилизациюцеолитапроводятвдвестадии:напервойстадииультрастабилизациюцеолитапроводятпритемпературе550-650°Сипарциальномдавлениипаровводыот0,1до1,0атм.,анавторойстадииультрастабилизациюосуществляютпослераспылительнойсушкиприпрокалкекомпозицииизцеолитаикомпонентовматрицыпритемпературе650-750°Сипарциальномдавлениипаровводыот0,05до0,3атм.12.Способпоп.1,отличающийсятем,чторешеточныймодульцеолитанапервойстадииполучаютвдиапазонеот5,5до7,5.23.Способпоп.1,отличающийсятем,чторешеточныймодульцеолитанавторойстадиирегулируютвдиапазонеот5,5до20,0.34.Способпоп.1,отличающийсятем,чтонапервойстадииультрастабилизацииподвергаютсмешаннуюкатион-декатионированнуюформуцеолитассодержаниемоксидовредкоземельныхэлементовот0,5до14,3мас.%впересчетенаоксиды.45.Способпоп.1,отличающийсятем,чтосодержаниеоксидовредкоземельныхэлементоввкомпозиции,состоящейизцеолитаикомпонентовматрицыкатализатора,передвторойстадиейультрастабилизацииподдерживаютот0,5до3,0мас.%впересчетенаоксиды.56.Способпоп.1,отличающийсятем,чтовкачествекомпонентовматрицыиспользуютаморфныйалюмосиликат,переосажденныйгидроксидалюминияибентонитовуюглину.6
Источник поступления информации: Роспатент

Showing 1-10 of 17 items.
20.02.2019
№219.016.bed4

Катализатор, способ его получения и процесс гидрообессеривания дизельных фракций

Изобретение относится к области химии, а именно к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан катализатор для процессов гидрообессеривания дизельных фракций, который в...
Тип: Изобретение
Номер охранного документа: 0002314154
Дата охранного документа: 10.01.2008
20.02.2019
№219.016.bf05

Катализатор, способ его получения, способ получения носителя для этого катализатора и процесс гидрообессеривания дизельных фракций

Изобретение относится к области химии, а именно к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений? и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан катализатор для...
Тип: Изобретение
Номер охранного документа: 0002313389
Дата охранного документа: 27.12.2007
20.02.2019
№219.016.c093

Углерод-кремнеземный композит

Изобретение относится к сорбентам, которые могут использоваться, в частности, в качестве усиливающих наполнителей в шинной и резинотехнической промышленности, сорбентов для очистки от органических и неорганических примесей и в других процессах. Углерод-кремнеземный композит, включающий оксид...
Тип: Изобретение
Номер охранного документа: 0002302373
Дата охранного документа: 10.07.2007
01.03.2019
№219.016.ca36

Способ фотокаталитической очистки газов

Изобретение относится к области фотокаталитической очистки газов, в том числе воздуха. Описан способ очистки газов, в том числе воздуха, окислением с использованием фотокатализатора, в котором исходную газовую смесь, содержащую окисляемые вещества, насыщают парами пероксида водорода, в качестве...
Тип: Изобретение
Номер охранного документа: 0002259866
Дата охранного документа: 10.09.2005
10.04.2019
№219.016.ffaf

Способ разложения сероводорода и/или меркаптанов

Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода и/или меркаптанов (тиолов), и может применяться для производства водорода и серы из сероводорода, а также для очистки от сероводорода и меркаптанов газовых смесей. Способ...
Тип: Изобретение
Номер охранного документа: 0002261838
Дата охранного документа: 10.10.2005
27.04.2019
№219.017.3e0a

Катализатор, способ его приготовления и способ получения ароматических углеводородов

Изобретение относится к процессам переработки легких углеводородов в более ценные продукты - ароматические углеводороды, а также к способам приготовления катализатора получения ароматических углеводородов. Настоящий катализатор получения ароматических углеводородов в процессе ароматизации...
Тип: Изобретение
Номер охранного документа: 0002333033
Дата охранного документа: 10.09.2008
29.04.2019
№219.017.41c3

Способ очистки водородсодержащих газовых смесей от оксида углерода (варианты)

Изобретение может быть использовано для очистки от оксида углерода обогащенных водородом газовых смесей. Процесс проводят в две стадии при температуре не ниже 90°С и давлении не ниже 1 атм. Очистку в первой из стадий проводят путем селективного окисления оксида углерода кислородом и/или...
Тип: Изобретение
Номер охранного документа: 0002359741
Дата охранного документа: 27.06.2009
30.05.2019
№219.017.6bd8

Бифункциональный катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии диметилового эфира (ДМЭ) с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002286210
Дата охранного документа: 27.10.2006
30.05.2019
№219.017.6bdb

Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода

Изобретение относится к катализатору, способу его приготовления и процессу каталитической очистки от оксида углерода обогащенных водородом газовых смесей. Описан катализатор очистки водородсодержащих газовых смесей от оксида углерода путем метанирования оксида углерода, содержащий...
Тип: Изобретение
Номер охранного документа: 0002323044
Дата охранного документа: 27.04.2008
13.06.2019
№219.017.81e5

Состав для создания противофильтрационного экрана в низкотемпературных грунтах и породах и способ получения этого состава

Изобретение относится к области гидротехнического строительства и может быть использовано для создания противофильтрационного экрана, восстановления водонепроницаемости гидротехнического сооружения (понижения водопроницаемости) из низкотемпературных грунтов и пород, особенно в районах вечной...
Тип: Изобретение
Номер охранного документа: 0002382138
Дата охранного документа: 20.02.2010
Showing 1-10 of 22 items.
20.07.2014
№216.012.de7f

Способ деасфальтизации мазута

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа деасфальтизации мазута путем контактирования пропитанного мазутом широкопористого адсорбента с катализатором крекинга. Способ осуществляют в барабанной вращающейся печи при температуре 200-250°С, времени...
Тип: Изобретение
Номер охранного документа: 0002522745
Дата охранного документа: 20.07.2014
13.01.2017
№217.015.7702

Способ каталитического облагораживания бензинов термических процессов

Изобретение относится к способу облагораживания бензинов термических процессов, включающий смешение их с нефтяными фракциями - донорами водорода при температуре менее 100°C с последующей переработкой в условиях каталитического крекинга при температуре 420-480°С в системе реактор-регенератор, на...
Тип: Изобретение
Номер охранного документа: 0002599721
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7765

Катализатор для осуществления реакций межмолекулярного переноса водорода и способ его приготовления

Настоящее изобретение относится к нефтеперерабатывающей промышленности, а именно к катализатору и способу его приготовления для осуществления реакций межмолекулярного переноса водорода. Предлагаемый катализатор включает цеолит Y в редкоземельной форме, цеолит HZSM-5, матрицу, содержащую...
Тип: Изобретение
Номер охранного документа: 0002599720
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.d0d3

Способ приготовления катализатора крекинга с щелочноземельными элементами

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к способам приготовления катализаторов каталитического крекинга нефтяных фракций. Способ приготовления катализатора крекинга включает проведение ионных обменов на катионы редкоземельных элементов и...
Тип: Изобретение
Номер охранного документа: 0002621345
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dc0f

Способ приготовления ультрастабильного цеолита y

Изобретение относится к приготовлению цеолита типа Y. Способ получения ультрастабильного цеолита типа Y включает проведение четырех ионных обменов катионов натрия на катионы редкоземельных элементов и аммония в цеолите NaY и две стадии ультрастабилизации цеолита в среде водяного пара. При...
Тип: Изобретение
Номер охранного документа: 0002624307
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.eac6

Способ приготовления микрокристаллического цеолита nay

Изобретение относится к способу приготовления микрокристаллического цеолита NaY, используемого для получения на его основе адсорбентов и катализаторов, в частности катализаторов крекинга и гидрокрекинга. Способ приготовления микрокристаллического цеолита NaY включает осаждение алюмосиликатного...
Тип: Изобретение
Номер охранного документа: 0002627900
Дата охранного документа: 14.08.2017
02.12.2018
№218.016.a29e

Способ приготовления микросферического катализатора для крекинга нефтяных фракций

Предложен способ приготовления микросферического катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, двухстадийную ультрастабилизацию цеолита, смешение цеолита с матрицей, в качестве компонентов которой...
Тип: Изобретение
Номер охранного документа: 0002673813
Дата охранного документа: 30.11.2018
02.12.2018
№218.016.a2ae

Микросферический катализатор для крекинга нефтяных фракций

Предложен микросферический катализатор для крекинга нефтяных фракций, включающий ультрастабильный цеолит Y в катион-декатионированной форме и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину. В качестве компонента матрица содержит...
Тип: Изобретение
Номер охранного документа: 0002673811
Дата охранного документа: 30.11.2018
23.02.2019
№219.016.c62f

Катализатор для риформинга бензиновых фракций и способ его приготовления

Изобретение относится к области производства катализаторов риформинга бензиновых фракций. Описан катализатор риформинга бензиновых фракций, содержащий платину, рений, галоген-хлор или хлор и фтор и носитель - поверхностное соединение дегидратированного моносульфатоцирконата алюминия общей...
Тип: Изобретение
Номер охранного документа: 0002289475
Дата охранного документа: 20.12.2006
24.05.2019
№219.017.5ebe

Способ каталитического крекинга бутан-бутиленовой фракции и катализатор для его осуществления

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, а именно к способу переработки промышленной бутан-бутиленовой фракции и получению катализатора для осуществления этого способа. Предлагаемый катализатор крекинга бутан-бутиленовой фракции включает модифицированный...
Тип: Изобретение
Номер охранного документа: 0002688662
Дата охранного документа: 22.05.2019
+ добавить свой РИД