×
19.06.2019
219.017.85ae

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ОТЛИВОК ИЗ ЖАРОПРОЧНОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии и может быть использовано, в частности, для изготовления рабочих лопаток газотурбинных двигателей и других узлов и деталей, работающих в диапазоне температур до 1000°С. Техническим результатом изобретения является повышение предела выносливости и прочностных характеристик изделий. Отливки из сплава, содержащего, мас.%: хром 3,0-7,0, кобальт 4,0-8,5, вольфрам 11,5-15,0, углерод 0,1-0,2, алюминий 4,8-5,8, ниобий 0,4-1,0, титан 2,0-3,0, молибден 0,5-1,0, бор ≤0,025, лантан ≤0,02, иттрий ≤0,02, церий ≤0,02, никель - остальное, подвергают термообработке или термообработке после газостатического прессования. Термообработку осуществляют по режиму - нагрев до температуры полного растворения γ'-фазы ±25°С, выдержка и охлаждение. 8 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе никеля и изделиям, выполняемым из этих сплавов для авиационной техники, машиностроения и других отраслей народного хозяйства, и может быть использовано, в частности, для изготовления рабочих лопаток газотурбинных двигателей, а также других узлов и деталей, работающих в диапазоне температур до 1000°С.

Известен способ обработки отливок из жаропрочных дисперсионно-твердеющих сплавов на основе никеля, заключающийся в том, что изделия нагревают до 1175°С±10°С, выдерживают при этой температуре 30-35 мин, подвергают последующей горячей прокатке с температурой конца не ниже 1050°С, выдерживают при указанной температуре 5 часов, охлаждают на воздухе и подвергают одинарному старению при 800°С в течение 16 часов (А.с. СССР №1744143, МПК5: C22F 1/10, БИ №24 за 1992 год) - аналог.

Недостатком известного решения является нестабильность механических свойств из-за склонности жаропрочных сплавов на никелевой основе вакуумно-дугового способа выплавки к росту зерна и укрупнению карбидных выделений по границам зерен при длительных выдержках в процессе высокотемпературных нагревов.

Известен способ обработки жаропрочного сплава на основе никеля со следующим химическим составом, мас.%: хром - 11,0-13,0, кобальт - 8,0-17,0, молибден - 6,0-8,0, титан - 4,0-5,0, алюминий - 4,0-5,0, ниобий - 1,5, гафний - 1,0, углерод, бор и церий - каждый - 5×10-4, никель - остальное до 100, заключающийся в том, что сплав подвергают горячей ковке при температуре между температурой точки солидуса минус 45°С при скорости деформации от 5×10-5 до 2×10-2 с-1 и при степени деформации выше 0,1, после которой следует охлаждение детали, последующая промежуточная термообработка в диапазоне температур от (Тсолидуса γ' - 95°)С до (Тсолидуса γ' - 30°)С в течение 1-24 ч и термообработка, осуществляемая при температуре между температурой точки солидуса γ'-фазы суперсплава плюс 5°С и температурой точки солидуса γ'-фазы суперсплава плюс 25°С в течение 1-4 часов (патент РФ №2133784, МПК6: C22F 1/10, С22С 19/05, публикация 1999.07.27) - аналог.

Недостатком известного решения является недостаточная жаропрочность сплава, так как в его составе отсутствует вольфрам, а как известно из уровня техники, вольфрам вводят в сплавы для повышения жаропрочности твердого раствора, он повышает температуру плавления сплавов, входит в твердый раствор в γ'-фазу и в карбиды.

Техническим результатом, на достижение которого направлено заявляемое изобретение по второму варианту, является повышение предела выносливости и прочностных характеристик изделий, изготовленных из заявляемого сплава заявляемым способом, например, таких как длительная прочность (сточасовая прочность), трещиностойкость и стабильность никелевого жаропрочного сплава при его работе при температурах до 1000°С.

Указанный технический результат достигается тем, что в способе обработки отливок из никелевого жаропрочного сплава, состав которого содержит (мас.%): - хром - 3,0-7,0, кобальт - 4,0-8,5, вольфрам - 11,5-15,0, углерод - 0,1-0,2, алюминий - 4,8-5,8, ниобий - 0,4-1,0, титан - 2,0-3,0, молибден - 0,5-1,0, бор - ≤0,025, лантан - ≤0,02, иттрий - ≤0,02, церий - ≤0,02, никель - остальное до 100%, отливки подвергают горячему изостатическому прессованию (ГИП) с последующей термообработкой по режиму - нагрев до температуры Тпр ±25°С, где Тпр - температура полного растворения γ'-фазы, выдержка и охлаждение.

В заявляемом способе после охлаждения отливок могут осуществлять их старение по режиму - нагрев до температуры (Тпр -50°С), выдержка и охлаждение.

В заявляемом способе нагрев могут осуществлять в соответствии с заявляемым способом, а охлаждение могут осуществлять со скоростью не ниже 50°С/мин.

В соответствии с заявляемым способом время выдержки могут выбирать из условия достижения, по меньшей мере, 85% отливки структуры гомогенного состояния.

В заявляемом способе газостатическое прессование возможно осуществлять за два этапа.

В заявляемом способе на первом этапе газостатического прессования возможно осуществление низкотемпературного газостатического прессования, а на втором - высокотемпературного.

В заявляемом способе низкотемпературное газостатическое прессование могут осуществлять при температуре 950°С≤Т≤1150°С и давлении 100-170 МПа.

В заявляемом способе высокотемпературное газостатическое прессование могут осуществлять при температуре Тпр ±25°С, где Тпр - температура полного растворения γ'-фазы, и давлении 100-170 МПа.

В заявляемом способе охлаждение отливки могут проводить на воздухе при температуре окружающей среды (комнатной температуре).

На чертеже приведен график зависимости предела сточасовой прочности в зависимости от температуры для отливки из заявляемого сплава (ЖС6У-ПК) и из известного сплава ЖС-6У, которые подвергнуты обработке в соответствии с заявляемым изобретением.

В заявляемом изобретении технический результат по обоим вариантам достигается путем использования в совокупности как заявляемого состава сплава на основе никеля, так и условий обработки отливок, изготовленных из данного сплава и предназначенных, например, для производства деталей газотурбинного двигателя, в частности рабочих лопаток турбин.

Из анализа результатов эксплуатации газотурбинной техники известна важная роль границ зерен в процессе разрушения образцов из поликристаллических сплавов при их испытаниях на долговечность и усталость при температурах не выше 1000°С. Установлено, что при всех исследованных температурах зарождение статических и усталостных трещин происходит на границах зерен, причем при температурах до 800°С трещины распространяются только вдоль границ зерен. При температурах 900°С трещины развиваются еще и по телу зерен, а при дальнейшем повышении температуры трещины зарождаются в основном на окисленных карбидах на поверхности образцов.

Для уменьшения возможности зарождения усталостных трещин важное значение имеет состав жаропрочного сплава, в частности его основа и система легирования, причем при выборе системы легирования поликристаллических жаропрочных никелевых сплавов особое внимание следует уделять состоянию границ зерен, а для этого целесообразно использовать никелевые жаропрочные сплавы и включать в систему легирования карбидообразующие и другие элементы, стабилизирующие границы зерен, кроме того, необходима система поверхностно-активных элементов - микролегирующих добавок, образующих равновесные сегрегации на структурных дефектах и тем самым снижающих энергию границ зерен при их сочетании с остальными элементами, входящими в состав сплава.

Количество и состав микролегирующих добавок влияет не только на границы зерен в сплаве, но оказывает благоприятное воздействие и на другие дефекты кристаллической структуры, например на антифазные границы в упорядоченной структуре γ'-фазы, возникающие при перерезании частиц упрочняющей γ'-фазы дислокациями в процессе ползучести, и, следовательно, сплав должен быть сбалансирован как по составу микролегирующих элементов, так и по характеру их взаимодействия с остальными компонентами сплава. Количество и состав микролегирующих добавок зависит от состава и количества других компонентов, входящих в состав сплава, и определяется, например, расчетным путем. Количество вводимых в сплав углерода и карбидообразующих компонентов также должно быть сбалансировано, так как углерод является обязательным карбидообразующим элементом, а на карбидах возможно зарождение трещин, приводящих к разрушению сплавов.

Карбидообразующими элементами в заявляемом составе жаропрочного никелевого сплава с поликристаллической структурой являются: углерод, хром, вольфрам, ниобий, титан и молибден.

Микролегирующие элементы: бор, лантан, иттрий и церий.

Жаропрочный никелевый сплав с поликристаллической структурой получают смешиванием компонентов состава сплава в указанных в формуле изобретения количествах в соответствии с известными методами изготовления никелевых жаропрочных сплавов. Состав заявляемого жаропрочного никелевого сплава с поликристаллической структурой, с заявляемым составом компонентов и в указанных количественных диапазонах их содержания сбалансирован в соответствии с изложенным выше.

Как известно, хром повышает жаростойкость и жаропрочность твердого раствора, снижает температуру плавления сплава. В эвтектической системе Ni-Cr образуются широкие области твердых растворов, так как растворимость хрома в никеле более 30%. Хром улучшает свариваемость сплавов и образует карбиды, упрочняющие границы зерен, однако высокое содержание хрома стабилизирует пластинчатые хрупкие σ и μ-фазы, которые охрупчивают сплавы. Введение в состав сплава хрома на нижнем пределе (3%) обеспечивает минимальный приемлемый уровень жаростойкости сплава, работающего в условиях температуры до 1000°С, а увеличение содержания хрома выше 7% приводит к неконтролируемому образованию σ-фазы, особенно при длительной наработке, что вызывает его преждевременное разрушение.

Вольфрам и молибден вводят в сплавы для повышения жаропрочности твердого раствора. Вольфрам повышает температуру плавления сплавов, оба элемента входят в твердый раствор, в γ'-фазу и в карбиды. Их введение повышает температуру полного растворения γ'-фазы при нагреве. Чрезмерное увеличение содержания вольфрама в современных жаропрочных сплавах приводит к интенсификации протекания карбидных реакций и образованию Ме6С. Содержание вольфрама до 11,5-15,0% приводит к повышению характеристик жаропрочности и структурной стабильности сплава. При уменьшении количества вольфрама менее 11,5% данный эффект заметно снижается, при содержании в сплаве вольфрама в количестве более 15% возможно образование фаз α-вольфрам и карбидов типа Ni3W3C, т.е. введение дополнительного к верхнему пределу количества вольфрама не только не упрочняет сплав, но и приводит к его разрушению.

Ниобий и молибден обеспечивают повышение долговечности материала в области температур до 1000°С. Углерод вводится в состав сплава для образования второй упрочняющей фазы жаропрочных сплавов - карбидов. Ниобий стабилизирует γ'-фазу, образует с никелем соединения типа Ni3Nb и увеличивает объемную долю упрочняющей γ'-фазы, входит в твердый раствор, повышая его жаропрочность, и в карбиды МеС. Пластинчатые выделения фаз типа Ni3Nb образуются при чрезмерно высоком содержании ниобия и охрупчивают сплавы.

Алюминий и титан - это основные γ'-образующие элементы, количество которых, с одной стороны, обеспечивает образование необходимого содержания упрочняющей γ' - фазы, а с другой стороны, ограничивает объем избыточной эвтектики (γ'+γ). Титан является одним из наиболее важных легирующих элементов в жаропрочных сплавах и входит в упрочняющую γ'-фазу Ni3AlTi. Увеличение содержания титана повышает количество и стабильность γ'-фазы, но снижает жаропрочность и стабильность сплава.

Введение в состав сплава кобальта в заявляемых количествах 4,0-8,5% улучшает пластичность, литейные свойства сплава, а также его стойкость в условиях воздействия солевого тумана. Если кобальта менее 4% - данный эффект практически отсутствует, если кобальта более 8,5% - улучшения свойств не происходит.

Микролегирующие элементы бор, церий, лантан и иттрий являются поверхностно-активными веществами, которые распределяются на дефектах структуры, в частности на границах зерен, снижают поверхностную энергию границ и тем самым повышают структурную стабильность сплавов. Одновременно они оказывают модифицирующее действие на сплавы - измельчают микрозерно, уменьшают размер дендритной ячейки, изменяют морфологию и распределение неметаллических включений. Они очень мало растворимы в никеле и весьма эффективно очищают границы зерен от серы, кислорода и других примесей, задерживают процессы разупрочнения литейных никелевых сплавов и тем самым повышают их структурную стабильность, кроме того, они повышают жаростойкость и улучшают защитные свойства оксидных пленок на сплавах.

Другим неотъемлемым условием достижения заявляемого технического результата по обоим вариантам являются условия обработки отливок из никелевого жаропрочного сплава заявляемого состава, для этого в заявляемом способе отливки подвергают либо только термообработке по режиму - нагрев, выдержка и охлаждение, либо газостатическому прессованию с последующей термообработкой по режиму - нагрев, выдержка и охлаждение, как и для процесса без газостатической обработки, параметры газостатического прессования и режим термообработки выбирают для каждого конкретного случая, и они зависят от целого ряда параметров, например содержания элементов в конкретном составе сплава, от размеров отливки и т.д.

Проведение операции газостатического прессования приводит к уплотнению отливок, в частности литых лопаток газотурбинного двигателя, в результате залечивания литейной пористости.

Для обоих заявляемых вариантов термообработка по режиму - нагрев Тпр ±25°С, выдержка и охлаждение - позволяет сформировать оптимальную микроструктуру сплава, состоящую из γ-матрицы (твердый раствор на основе никеля) и частиц упрочняющей γ'-фазы (обычно это кубоиды размером до 0,5 мкм).

Нагрев до температуры Тпр ±25°С необходим для того, чтобы обеспечить растворение в матрице частиц упрочняющей γ'-фазы, образовавшихся после охлаждения при литье. Такие частицы, как правило, не имеют оптимальных размера, формы и других параметров. Оптимальная микроструктура формируется при последующем регламентируемом охлаждении от Тпр ±25°С. После нагрева до Тпр ±25°С осуществляется выдержка, необходимая для диффузионного растворения части γ'-фазы, уменьшения ликвации легирующих элементов, связанной, например, с наличием дендритной структуры. Время выдержки зависит от размера обрабатываемой детали, характера микроструктуры и выбирается на основании металлографического изучения микроструктуры контрольных образцов.

Для получения заявляемого технического результата по второму варианту в случае обработки отливок рабочих лопаток газотурбинного двигателя из заявляемого жаропрочного сплава на основе никеля газостатическое прессование могут осуществлять за два этапа - сначала низкотемпературное газостатическое прессование при температуре 950°С≤Т≤1150°С и давлении 100-170 МПа, а потом высокотемпературное газостатическое прессование при режимах - Тпр ±25°С, где Тпр - температура полного растворения γ'-фазы, и давлении 100-170 МПа, а условия термообработки выбирают следующими - нагрев при температуре Тпр ±25°С, выдержка в течение времени, которое выбирают из условия достижения, по меньшей мере, 85% отливки структуры гомогенного состояния (определяется по результатам металлографического изучения микроструктуры контрольных образцов), а охлаждение - со скоростью не ниже 50°С/мин, где Тпр - температура полного растворения γ'-фазы.

Пример конкретного выполнения.

Для практического осуществления изобретения были выплавлены три сплава - два сплава (ЖС6У-ПК) заявляемого состава и один состава сплава ЖС-6У, который по свойствам наиболее близок к заявляемому (таблица 1).

Таблица 1
№ плавкиХимический состав, в мас.%
CrСоСWAlNiTiMoBLaYСе
15,905,340,1412,95,40Осн2,90,80,020,020,020,02
25,625,110,1312,75,46Осн2,61,00,020,020,020,02
ЖС-6У8,609,900,1810,205,60Осн2,41,30,035Zr - 0,040,010,025

Сплавы готовились в вакуумных индукционных печах с разрежением 10-2-10-3 мм рт.ст. и емкостью 160 кг (ИСВ-06). Порядок загрузки: смешивают никель, кобальт, хром, вольфрам, молибден, ниобий и углерод, осуществляют их плавление и раскисление углеродом, после чего осуществляют продувку ванны аргоном, вводят титан и алюминий, микролегирующие добавки - бор, иттрий, лантан, церий и осуществляют плавку при температуре 1000-1050°С, а расплав охлаждают со скоростью 750-800°С и получают отливки с поликристаллической структурой.

Согласно способу изготавливают (плавки №1 и №2) отливки из заявляемого сплава с Тпр=1240°С и из известного сплава ЖС-6У по форме рабочей лопатки газотурбинного двигателя, после чего очищают их от окалины. Размеры отливок - длина 160 мм, размер поперечного сечения 40 мм, вес 250 граммов. Затем отливки плавки №1 подвергают обработке газостатическим прессованием с последующей термообработкой. Отливку №1 помещают в газостат и подвергают газостатическому прессованию в две ступени: низкотемпературная - при температуре 1050°С и давлении 130 МПа в течение 2 часов, а потом высокотемпературная - при температуре Т=1230°С и давлении 140 МПа в течение 2 часов. После чего осуществляют термообработку - нагрев до температуры 1230°С, выдержку в течение 3 часов и последующее охлаждение со скоростью 70°С/мин. Другую отливку (плавка №2) подвергали только термообработке без предварительного газостатического прессования, причем отливку обрабатывали при следующих режимах - нагрев до температуры 1230°С, выдержку в течение 3 часов и охлаждение со скоростью 80°С/мин.

Результаты испытаний приведены в таблице 2, где сравниваются свойства заявляемого сплава ЖС6У-ПК (плавка №1 - ГИП + термообработка по заявляемому режиму; плавка №2 - термообработка по заявляемому режиму) и известного сплава ЖС-6У.

Таблица 2.
Номер плавки100-часовая прочность (МПа) при Т=1012°С100-часовая прочность (МПа) при Т=1000°С100-часовая прочность (МПа) при Т=900°С100-часовая прочность (МПа) при Т=850°С100-часовая прочность (МПа) при Т=800°С
1168184386546682
2164180372532675
ЖС-6У170175352455562

Приведенные на чертеже средние результаты испытаний для плавок №1 и №2 показывают, что по сравнению с известным сплавом ЖС-6У заявляемый способ обработки отливок (по обоим вариантам) обеспечивает достижение заявляемого технического результата, а именно - повышение прочностных характеристик никелевых жаропрочных поликристаллических сплавов на основе никеля, таких как предел сточасовой прочности при температурах не выше 1000°С.

1.Способобработкиотливокизжаропрочногосплаванаосновеникеля,имеющегосостав,мас.%:хром3,0-7,0,кобальт4,0-8,5,вольфрам11,5-15,0,углерод0,1-0,2,алюминий4,8-5,8,ниобий0,4-1,0,титан2,0-3,0,молибден0,5-1,0,бор-≤0,025,лантан≤0,02,иттрий≤0,02,церий≤0,02,никель-остальное,включающийтермообработкуотливокилитермообработкуотливокпослегазостатическогопрессования,которуюосуществляютпорежиму-нагревдотемпературыТпр±25°С,выдержкаиохлаждение,гдеТпр-температураполногорастворенияγ'-фазы.12.Способпоп.1,отличающийсятем,чтовремявыдержкивыбираютизусловиядостиженияпоменьшеймере85%отливкиструктурыгомогенногосостояния.23.Способпоп.1,отличающийсятем,чтогазостатическоепрессованиеосуществляютзадваэтапа.34.Способпоп.1,отличающийсятем,чтопослеохлажденияотливокосуществляютихстарение.45.Способпоп.4,отличающийсятем,чтостарениеосуществляютпорежиму-нагревдотемпературыменьшеТпр-50°С,выдержкаиохлаждение.56.Способпоп.3,отличающийсятем,чтонапервомэтапегазостатическогопрессованияосуществляютнизкотемпературноегазостатическоепрессование,анавтором-высокотемпературное.67.Способпоп.6,отличающийсятем,чтонизкотемпературноегазостатическоепрессованиеосуществляютпритемпературе950°С≤Т≤1150°Сидавлении100-170МПа.78.Способпоп.6,отличающийсятем,чтовысокотемпературноегазостатическоепрессованиеосуществляютпритемпературеТпр±25°Сидавлении100-170МПа.89.Способпоп.1или5,отличающийсятем,чтоохлаждениепроизводятсоскоростьюнениже50°С/мин.9
Источник поступления информации: Роспатент

Showing 51-52 of 52 items.
10.07.2019
№219.017.ad5e

Состав жаропрочного никелевого сплава (варианты)

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах выше 1000°С. Сплав по первому варианту содержит, мас.%: хром 1,0-4,0, алюминий 4,5-7,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002353691
Дата охранного документа: 27.04.2009
10.07.2019
№219.017.adcf

Система подачи топлива в двигатель летательного аппарата

Изобретение относится к насосным агрегатам для подачи топлива в силовую установку летательного аппарата. Система содержит насос низкого давления, вход которого соединен с источником топлива, пусковой насос, золотниковый переключатель потоков, связанный с регулятором режима работы двигателя...
Тип: Изобретение
Номер охранного документа: 0002374144
Дата охранного документа: 27.11.2009
Showing 71-80 of 87 items.
09.06.2019
№219.017.7ef0

Способ нанесения износостойких покрытий на лопатки компрессора гтд

Изобретение относится к области авиадвигателестроения, а именно к нанесению покрытий на лопатки компрессора газотурбинных двигателей. Способ включает осаждение чередующихся слоев металлов и их нитридов с очисткой поверхности лопаток ионами аргона и ионной имплантацией в процессе осаждения....
Тип: Изобретение
Номер охранного документа: 0002430992
Дата охранного документа: 10.10.2011
19.06.2019
№219.017.85b4

Способ получения никелевого жаропрочного сплава

Изобретение относится к металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей, работающих в условиях высоких температур и напряжений. Техническим результатом является повышение длительной (сточасовой)...
Тип: Изобретение
Номер охранного документа: 0002344188
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.8812

Способ ремонта лопаток турбины газотурбинного двигателя

Изобретение относится к области ремонта, в частности к ремонту лопаток турбин газотурбинных двигателей химико-термическими методами, и может быть использовано в областях техники, где используются газотурбинные двигатели. Способ включает очистку пера и замка лопаток от эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002367554
Дата охранного документа: 20.09.2009
20.06.2019
№219.017.8c94

Литейный никелевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе никеля, и может быть использовано в газоперекачивающих, энергетических и морских газотурбинных установках (ГТУ) с длительной наработкой, в частности для литья охлаждаемых рабочих и сопловых лопаток с равноосной...
Тип: Изобретение
Номер охранного документа: 0002691790
Дата охранного документа: 18.06.2019
10.07.2019
№219.017.ac0d

Состав жаропрочного никелевого сплава для монокристального литья (варианты)

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах. Сплав по первому варианту содержит, мас.%: хром - 0,5-4,0, алюминий - 4,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002348724
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ac11

Состав жаропрочного никелевого сплава для монокристального литья (варианты)

Изобретение относится к металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для производства монокристальных рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах, превышающих 1000°С. Согласно первому варианту сплав имеет...
Тип: Изобретение
Номер охранного документа: 0002348725
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ad5e

Состав жаропрочного никелевого сплава (варианты)

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах выше 1000°С. Сплав по первому варианту содержит, мас.%: хром 1,0-4,0, алюминий 4,5-7,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002353691
Дата охранного документа: 27.04.2009
10.07.2019
№219.017.adcf

Система подачи топлива в двигатель летательного аппарата

Изобретение относится к насосным агрегатам для подачи топлива в силовую установку летательного аппарата. Система содержит насос низкого давления, вход которого соединен с источником топлива, пусковой насос, золотниковый переключатель потоков, связанный с регулятором режима работы двигателя...
Тип: Изобретение
Номер охранного документа: 0002374144
Дата охранного документа: 27.11.2009
10.07.2019
№219.017.b0be

Способ производства заготовок из жаропрочных порошковых сплавов

Изобретение относится к порошковой металлургии, в частности к получению заготовок из порошков жаропрочных никелевых сплавов. Может использоваться для изготовления деталей, стойких к окислению при повышенных температурах и работающих в условиях тяжелого нагружения. Порошок жаропрочного сплава...
Тип: Изобретение
Номер охранного документа: 0002449858
Дата охранного документа: 10.05.2012
23.07.2019
№219.017.b71c

Деформируемый жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений,...
Тип: Изобретение
Номер охранного документа: 0002695097
Дата охранного документа: 19.07.2019
+ добавить свой РИД