×
13.06.2019
219.017.813c

Результат интеллектуальной деятельности: Способ получения микросфер полимерного проппанта

Вид РИД

Изобретение

Аннотация: Изобретение относится к проппантам из полимерных материалов, применяемым при добыче нефти и газа методом гидравлического разрыва пласта. В способе получения микросфер полимерного проппанта, включающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов, содержащей компоненты: полимерный стабилизатор, радикальный инициатор, рутениевый катализатор метатезисной полимеризации дициклопентадиена, перемешивание полученной жидкой полимерной матрицы, формирование микросфер, отделение их, нагревание в инертной среде и выделение целевого продукта, жидкую полимерную матрицу перемешивают до достижения значения вязкости в диапазоне 10-100 сП, формирование микросфер осуществляют, подавая полимерную матрицу погружением ее в водный раствор поливинилового спирта, используемого в качестве стабилизатора, используя трубку, конец которой помещают в емкость с водным раствором поливинилового спирта, при объемном отношении от 1:2 до 1:6, перемешивая и диспергируя в течение 10-60 мин с образованием эмульсии, которую нагревают до температуры 95-100°С в течение 30-90 мин и выдерживают при заданной температуре в течение 5-10 мин с образованием микросфер, полученную суспензию охлаждают, отделяют микросферы фильтрацией, отмывают от остатков стабилизатора, высушивают, нагревают в атмосфере инертного газа в течение 30-90 мин и после охлаждения выделяют целевой продукт с размером частиц 0,5-1,4 мм. Изобретение развито в зависимом пункте формулы. Технический результат - повышение качества и выхода микросфер. 1 з.п. ф-лы, 8 пр.

Изобретение относится к области химии высокомолекулярных соединений, а именно к проппантам из полимерных материалов с повышенными требованиями к физико-механическим свойствам, применяемых при добыче нефти и газа методом гидравлического разрыва пласта в качестве расклинивающего агента, применяемого при добыче нефти и газа методом гидравлического разрыва пласта.

Суспензионная полимеризация широко распространенный способ получения полимеров по реакции радикальной полимеризации. Для таких мономеров как метилметакрилат, стирол и их сополимеров суспензионная полимеризация промышленно реализована в виде многотоннажных производств.

Известен способ суспензионной полимеризации дициклопентадиена (ДЦПД) по механизму метатезиса с получением микросфер из полидициклопентадиена (ПДЦПД), включающий смешивание ДЦПД с катализатором и диспергирование смеси в этиленгликоле, содержащем поверхностно-активные вещества (ПАВ) при продувании дисперсии инертным газом. Е. Khosravi, Т. Szymanska-Buzar (Eds.) Ring Opening Metathesis Polymerisation and Related Chemistry: State of the Art and Visions for the New Century, Proceedings of the NATO Advanced Study Institute, held in Polaica-Zdroj, Poland, 3-15 September 2000, p. 44, 2002.

Недостатком способа является низкое качество получаемых микросфер, не менее 82% которых имеет размер меньше 1 мкм, а также необходимость продувания реакционной среды инертным газом для предотвращения окисления продуктов полимеризации. Эти недостатки обусловлены видом применяемых катализаторов и используемой средой, в которой частично растворяется ДЦПД.

Известен способ суспензионной полимеризации ДЦПД по механизму метатезиса с получением пористых микросфер из ПДЦПД. A.D. Martina, R. Graf, J.G. Hilborn Macroporous poly(dicyclopentadiene) beads. Journal of Applied Polymer Science, v. 96, p. 407-415, 2005.

Недостатком способа является низкое качество получаемых микросфер, имеющих размер в диапазоне 200-600 мкм. Эти недостатки обусловлены применением как видом используемых катализаторов, так и введением в мономерную смесь порогена, препятствующего формированию монолитной структуры гранул.

Известный способ получения микросфер полимерного проппанта включает получение жидкой полимерной смеси путем последовательного смешивания дициклопентадиена чистотой не менее 98% с полимерным стабилизатором, полимерным модификатором, радикальным инициатором и катализатором. Полученную полимерную смесь выдерживают при температуре 10-50°С в течение 1-40 мин. Далее вводят в виде ламинарного потока в предварительно нагретую не ниже температуры смеси воду, содержащую катионные или анионные поверхностно-активные вещества. Сферы образуются при постоянном перемешивании жидкой среды. Образовавшиеся микросферы отделяют от раствора, нагревают до температуры 150-340°С и выдерживают при данной температуре в течение 1-360 мин. RU 2528834 С1, опубл. 20.09.2014.

Недостатком этого способа выступает необходимость введения мономерной смеси в виде ламинарного потока в водную фазу, и применение в качестве стабилизаторов катионных или анионных ПАВ. Первое, удлиняет общее время процесса, второе, приводит к увеличению содержания фракций микросфер ПДЦПД с размером частиц менее 0,1 мм.

Известен способ получения полимерного проппанта, предложенный в патентной заявке US 2016/0046856 А1, опубл. 18.02.2016.

Недостатком предложенного решения являются: необходимость введения в мономерную смесь наполнителя, дополнительной стадии подготовки и выделения наполнителя, использование в качестве стабилизатора смеси поливинилового спирта с гидроксидом натрия и хлоридом магния. Необходимость введения и подготовки наполнителя усложняет и удлиняет процесс получения микросфер, а применение смешанного стабилизатора приводит к увеличению загрязнения сточных вод после проведения полимеризации.

Наиболее близким к предлагаемому является способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов. Полимерная матрица содержит компоненты, масс %: полимерный стабилизатор - 0,1-3,0, радикальный инициатор - 0,1-4,0, рутениевый катализатор метатезисной полимеризации дициклопентадиена - 0,001-0,02, смесь олигоциклопентадиенов - остальное. Получают матрицу путем нагрева ДЦПД до температуры 150-220°С и выдержки его при данной температуре в течение 15-360 мин. Далее смесь олигомеров охлаждают до комнатной температуры и последовательно вводят в нее полимерные стабилизаторы, радикальные инициаторы и катализатор. Полученную полимерную матрицу перемешивают при температуре 0-35°С в течение 1-40 мин, после чего вводят в виде ламинарного потока в водный раствор загустителя, содержащий ПАВ, имеющий вязкость 5-500 сП и температуру 5-50°С, при постоянном перемешивании жидкости. Полученные микросферы отделяют и нагревают в среде инертной жидкости до температуры 150-340°С, выдерживают при данной температуре в течение 1-360 мин, получая микросферы полимерного проппанта. RU 2552750 С1, опубл. 10.06.2015.

Недостатком способа выступает необходимость введения мономерной смеси в виде ламинарного потока в водную фазу, и необходимость применения одновременно с катионными или анионными ПАВ водорастворимых полимеров в качестве загустителя. Первое, удлиняет общее, время процесса, второе, удорожает микросферы ПДЦПД и приводит к увеличению загрязнения сточных вод после проведения полимеризации.

Техническая задача изобретения заключается в разработке способа получения микросфер полимерного проппанта путем метатезисной полимеризации ДЦПД в водной суспензии в присутствии защитного коллоида.

Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении качества и выхода полимерных микросфер за счет снижения содержания нецелевых фракций с диаметром менее 0,5 мм и более 1,4 мм. Выход целевой фракции с размером частиц 0,5-1,4 мм составляет не менее 75 масс%. Повышение качества получаемых полимерных микросфер, выражается в том, что не менее 90 масс% частиц, средний размер которых находится в диапазоне 0,5-1,4 мм, имеют сферичность не менее 0,9, а также в уменьшении количества микросфер с газовыми включениями.

Технический результат достигается тем, что в способе, предусматривающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов, содержащей компоненты: полимерный стабилизатор, радикальный инициатор, рутениевый катализатор метатезисной полимеризации дициклопентадиена, перемешивание полученной полимерной матрицы, формирование микросфер, отделение их, нагревание в инертной среде и выделение целевого продукта, согласно изобретению, жидкую полимерную матрицу перемешивают дл достижения значения вязкости в диапазоне 10-100 сП, формирование микросфер осуществляют, подавая полимерную матрицу погружением ее в водный раствор поливинилового спирта, используемого в качестве стабилизатора, используя трубку, конец которой помещают в емкость с водным раствором поливинилового спирта при объемном отношении от 1:2 до 1:6, перемешивая и диспергируя в течение 10-60 мин с образованием эмульсии, которую нагревают до температуры 95-100°С в течение 30-90 мин и выдерживают при заданной температуре в течение 5-10 мин с образованием микросфер, полученную суспензию охлаждают, отделяют микросферы фильтрацией, отмывают от остатков стабилизатора, высушивают микросферы, нагревают в атмосфере инертного газа в течение 30-90 мин и выделяют целевой продукт с размером частиц 0,5-1,4 мм. При этом, в качестве стабилизатора используют водный раствор поливинилового спирта при концентрации 0,001-1,0 масс% (марки 18/11 по ГОСТ 10779-78).

Получают микросферы полимерного проппанта следующим образом.

Готовят полимерную матрицу на основе ДЦПД, используя компоненты полимерной матрицы и катализаторы метатезисной полимеризации, описанные в RU 2552750 С1. Полимерную матрицу перемешивают до достижения вязкости 10-100 сП и подают ее, погружая в водный раствор поливинилового спирта, используя трубку, нижний конец которой погружен в водный раствор стабилизатора. Объемное отношение полимерная матрица:раствор стабилизатора от 1:2 до 1:6. Смешение полимерной матрицы заданной вязкости с водной фазой стабилизатора позволяет провести диспергирование полимерной матрицы, сформировав капли с узким распределением по размерам таким образом, чтобы средний размер капель лежал в диапазоне 0,8-1,2 мм (определение среднего размера капель основано на визуальной оценке, например с помощью цифровой фотокамеры, подключенной к персональному компьютеру). Образовавшуюся эмульсию капель полимерной матрицы в водном растворе стабилизатора нагревают до температуры 95-100°С в течение 30-90 мин и выдерживают при заданной температуре в течение 5-10 мин. В процессе выдержки жидкие капли полимерной матрицы превращаются в твердые микросферы. Полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Далее микросферы нагревают в атмосфере инертного газа до температуры 150-340°С. В качестве инертного газа предпочтительно использовать аргон или азот. После выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Результат классифицируется по следующим характеристикам:

Содержание микросфер фракции (0,5-1,4 мм), масс%:

- А более 75

- Б от 50 до 75

- В менее 50

Сферичность (по диаграмме Крумбьена-Шлосса):

- А более 0,9

- Б от 0,5 до 0,9

- В менее 0,5

Содержание микросфер с газовыми включениями (гравитационное разделение в 7%-ном растворе хлорида натрия), масс%:

- А менее 10

- Б от 10 до 20

- В более 20.

Способ иллюстрируют следующие примеры.

Пример 1.

Готовят полимерную матрицу следующим образом. ДЦПД нагревают в автоклаве до температуры 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Далее в полученную смесь олигоциклопентадиенов вносят стабилизаторы: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (0,30 масс %), трис(2,4-ди-трет-бутилфенил)фосфит (0,40 масс %), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (0,40 масс %) и радикальные инициаторы: дикумилпероксид (2,0 масс %) и 2,3-диметил-2,3-дифенил-бутан (2,0 масс %). После растворения стабилизаторов и инициаторов при температуре 25°С, добавляют при перемешивании катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-диэтил-аминометил фенилметилен)рутений (0,01 масс %) с получением жидкой полимерной матрицы.

Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 10 сП и подают ее, погружая в 0,05%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 10 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 30 мин и выдерживают при заданной температуре в течение 5 мин с образованием микросфер. Полученную суспензию микросфер охлаждают, твердые микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 150°С в течение 90 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (Б), сферичность (А), содержание микросфер с газовыми включениями (Б).

Пример 2.

Полимерную матрицу готовят как описано в примере 1, но используют катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-метилэтил-аминометилфенилметилен)рутений (0,01 масс %). Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 100 сП и подают ее, погружая в 0,001%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 10 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до 100°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, твердые микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 200°С в течение 80 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (Б), сферичность (Б), содержание микросфер с газовыми включениями (А).

Пример 3.

Полимерную матрицу готовят как описано в примере 2. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 40 сП и подают ее, погружая в 0,1%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в водный раствор стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:4. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 30 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 100°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. Полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды, сушат и нагревают в атмосфере аргона до температуры 175°С в течение 30 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (А), сферичность (А), содержание микросфер с газовыми включениями (А).

Пример 4.

Полимерную матрицу готовят как описано в примере 2. После перемешивания до достижения вязкости 100 сП ее подают, погружая в 0,2%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:6. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 10 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 60 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 330°С в течение 60 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (В), сферичность (В), содержание микросфер с газовыми включениями (А).

Пример 5.

Готовят полимерную матрицу следующим образом. ДЦПД нагревают в автоклаве до температуры 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (0,30 масс %), трис(2,4-ди-трет-бутилфенил)фосфит (0,40 масс %), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (0,40 масс %) и радикальные инициаторы дитретбутилпероксид (1,5 масс %), 2,3-диметил-2,3-дифенил-бутан (2,5 масс %). После растворения стабилизаторов и инициаторов при температуре 25°С добавляют при перемешивании катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-метилэтил-аминометилфенилметилен)рутений (0,01 масс %) с получением жидкой полимерной матрицы. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 10 сП и подают ее, погружая в 0,001%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 5 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 100°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. Полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере аргона до температуры 340°С в течение 80 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают сферические микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (В), сферичность (А), содержание микросфер с газовыми включениями (В).

Пример 6.

Готовят полимерную матрицу следующим образом. ДЦПД нагревают в автоклаве до температуры 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (0,30 масс %), трис(2,4-ди-трет-бутилфенил)фосфит (0,40 масс %), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (0,40 масс %) и радикальные инициаторы дитретбутилпероксид (1,5 масс %), 2,3-диметил-2,3-дифенил-бутан (2,5 масс %). После растворения стабилизаторов и инициаторов при температуре 25°С добавляют при перемешивании катализатор метатезисной полимеризации - [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-метилэтил-аминометилфенил метилен)рутений (0,02 масс %) с получением жидкой полимерной матрицы.

Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 15 сП. После этого подают ее, погружая в 1,0%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:6. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 60 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 90 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере аргона до температуры 175°С в течение 40 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 97 масс %, содержание целевой фракции (В), сферичность (А), содержание микросфер с газовыми включениями (Б).

Пример 7.

Полимерную матрицу готовят как описано в примере 2. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 90 сП и подают ее, погружая в 0,001%-ный водный раствор поливинилового спирта, используя трубку, конец которой помещают в емкость с водным раствором стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:2. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 20 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 95°С в течение 30 мин и выдерживают при заданной температуре в течение 10 мин с образованием микросфер. Полученную суспензию микросфер охлаждают с образованием микросфер, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Высушенные микросферы нагревают в атмосфере азота до температуры 250°С в течение 30 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 99 масс %, содержание целевой фракции (В), сферичность (В), содержание микросфер с газовыми включениями (В).

Пример 8.

Полимерную матрицу готовят как описано в примере 2. Полученную жидкую полимерную матрицу перемешивают до достижения вязкости 20 сП и подают ее, погружая в 0,5%-ный водный раствор поливинилового спирта, используя трубку, конец которой погружен в водный раствор стабилизатора. Объемное отношение полимерная матрица : раствор стабилизатора 1:4. Далее включают механическое перемешивание и диспергируют полимерную матрицу в водном растворе стабилизатора в течение 60 мин. Образовавшуюся эмульсию капель в водном растворе стабилизатора нагревают до температуры 100°С в течение 30 мин и выдерживают при заданной температуре в течение 20 мин с образованием микросфер. После этого полученную суспензию микросфер охлаждают, микросферы отделяют от раствора фильтрацией, отмывают от остатков стабилизатора трехкратным объемом воды и сушат. Микросферы нагревают в атмосфере аргона до температуры 200°С в течение 45 мин. После охлаждения выделяют на вибросите целевую фракцию с размером частиц 0,5-1,4 мм.

Получают микросферы полимерного проппанта с выходом 98 масс %, содержание целевой фракции (В), сферичность (А), содержание микросфер с газовыми включениями (А).

Как видно из примеров данная технология позволяет получать микросферы полимерного проппанта из ПДЦПД более высокого качества и более простым способом.

Источник поступления информации: Роспатент

Showing 21-30 of 63 items.
19.10.2018
№218.016.93d2

Способ получения пластификатора

Изобретение относится к способу получения пластификатора. Способ включает смешивание сырья с растворителем, селективную очистку и последующую отгонку растворителя от рафинатного и экстрактного растворов. Способ характеризуется тем, что в качестве сырья используют дистиллятный экстракт фракции...
Тип: Изобретение
Номер охранного документа: 0002669936
Дата охранного документа: 17.10.2018
19.10.2018
№218.016.9415

Способ получения трифенилфосфата

Изобретение относится к способу получения трифенилфосфата и может использоваться в химической промышленности. Предложенный способ характеризуется тем, что трихлорид фосфора подвергают взаимодействию с фенолом при мольном соотношении 1:3,15-1:3,5, причем трихлорид фосфора добавляют к фенолу в...
Тип: Изобретение
Номер охранного документа: 0002669934
Дата охранного документа: 17.10.2018
19.10.2018
№218.016.9466

Способ получения смешанных триарилфосфатов

Изобретение относится к способу получения смешанных триарилфосфитов и может быть применено в химической промышленности. В предложенном способе проводят взаимодействие фенола с фосфорной кислотой, взятых в мольном отношении 2:1, при достижении температуры 175-250°С в течение 6,5-7 ч в атмосфере...
Тип: Изобретение
Номер охранного документа: 0002670105
Дата охранного документа: 18.10.2018
19.10.2018
№218.016.9474

Каталитическая система для низкотемпературного риформинга бензиновых фракций и способ его осуществления с применением каталитической системы

Изобретение относится к каталитической системе для процесса низкотемпературного риформинга бензиновых фракций, включающей три последовательно соединенных реактора с гранулированными катализаторами, первый из которых содержит катализатор, имеющий состав, мас.%: платина - 0,1-0,3, цеолит...
Тип: Изобретение
Номер охранного документа: 0002670108
Дата охранного документа: 18.10.2018
14.11.2018
№218.016.9ce2

Катализатор гидрирования олефинов в процессе получения синтетической нефти и способ его синтеза (варианты)

Изобретение относится к катализатору гидрирования олефинов в процессе получения синтетической нефти. Заявляется катализатор, содержащий 41-60 мас.% никеля от массы прокаленного катализатора и носитель, представляющий собой мезопористый оксид алюминия со средним размером частиц 3-7 нм, общим...
Тип: Изобретение
Номер охранного документа: 0002672269
Дата охранного документа: 13.11.2018
15.11.2018
№218.016.9d75

Мембранный контактор для очистки природных и технологических газов от кислых компонентов

Изобретение относится к области мембранного газоразделения и может быть использовано для удаления нежелательных компонентов природных и технологических газовых смесей. Устройство мембранного контактора для очистки природных и технологических газов от кислых компонентов посредством абсорбции...
Тип: Изобретение
Номер охранного документа: 0002672452
Дата охранного документа: 14.11.2018
15.11.2018
№218.016.9d78

Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения

Изобретение относится к катализатору для получения синтетических углеводородов с высоким содержанием изоалканов, представляющему собой смесь цеолита и базового катализатора синтеза Фишера-Тропша, носителем которого служит оксид алюминия. При этом цеолит имеет мезопористую мелкокристаллическую...
Тип: Изобретение
Номер охранного документа: 0002672357
Дата охранного документа: 14.11.2018
15.11.2018
№218.016.9da6

Способ получения основы огнестойкого масла

Изобретение относится к органическому синтезу и касается способа получения основы огнестойкого триарилфосфатного масла. Способ осуществляют путем смешивания трифенилфосфата с пара-трет-бутилфенолом в мольном отношении 1 : (0,45-0,55) и катализатором карбонатом калия. Полученную смесь нагревают,...
Тип: Изобретение
Номер охранного документа: 0002672360
Дата охранного документа: 14.11.2018
15.12.2018
№218.016.a821

Промывочный раствор для регенерации отработанного огнестойкого триарилфосфатного турбинного масла и способ регенерации отработанного огнестойкого турбинного масла с его использованием

Изобретение относится к процессам регенерации отработанных огнестойких масел на основе триарилфосфатов до кондиции, позволяющей их повторное использование в смазочной системе и системе регулирования турбоагрегата. Промывочный раствор для регенерации отработанного огнестойкого триарилфосфатного...
Тип: Изобретение
Номер охранного документа: 0002674992
Дата охранного документа: 14.12.2018
19.12.2018
№218.016.a8cf

Способ определения насыщенности низкопроницаемых пластов

Изобретение относится к нефтяной промышленности и может быть использовано при определении характера насыщения коллекторов. Сущность: способ определения насыщенности пласта включает проведение геофизических исследований скважины и лабораторных исследований керна, последующий расчет по выбранной...
Тип: Изобретение
Номер охранного документа: 0002675187
Дата охранного документа: 17.12.2018
Showing 21-30 of 57 items.
10.02.2016
№216.014.c1ba

Способ поперечной сшивки полидициклопентадиена

Изобретение относится к полимерным материалам на основе полициклопентадиена. Полимерную матрицу приготавливают введением в дициклопентадиен при комнатной температуре стабилизатора, растворением элементной серы в количестве 0,1-5,0 мас.%. Смесь перемешивают в течение 1-150 мин, вносят...
Тип: Изобретение
Номер охранного документа: 0002574692
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4a2

Катализатор метатезисной полимеризации дициклопентадиена, содержащий ацетамидный фрагмент, и способ его получения

Изобретение относится к области катализа и касается производства катализаторов полимеризации дициклопентадиена. Катализатор метатезисной полимеризации дициклопентадиена общей формулы (1), где заместители R и X+Y выбраны из группы: R=Me, X+Y=NH,...
Тип: Изобретение
Номер охранного документа: 0002574718
Дата охранного документа: 10.02.2016
10.03.2016
№216.014.c9f9

Способ получения катализатора метатезисной полимеризации дициклопентадиена

Изобретение относится к металлоорганической химии, в частности к способу производства карбенового комплекса рутения, который является катализатором полимеризации циклических олефинов, в частности дициклопентадиена. Трифенилфосфиновый комплекс рутения подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002577252
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dae0

Способ получения композиционного материала на основе полиолигоциклопентадиена и волластонита и композиционный материал

Изобретение относится к композиционным материалам. Способ получения композиционного материала на основе полиолигоциклопентадиена и волластонита включает получение жидкой композиции волластонита и олигоциклопентадиенов путем последовательно выполняемых операций обработки волластонита раствором...
Тип: Изобретение
Номер охранного документа: 0002579118
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.dd7c

Способ получения 2-(n,n-диалкиламинометил)стиролов

Изобретение относится к усовершенствованному способу получения 2-(N,N-диалкиламинометил)стиролов общей формулы: где R=R=Et; R=R=Me; R=Me, R=Et; R=Me, R=Bn; R=Me, R=n-Bu; R=Me, R=i-Pr; R=Et, R=i-Pr; R=Et, R=Bn или R=Et, R=n-Bu. Способ заключается в том, что изохинолин подвергают реакции с...
Тип: Изобретение
Номер охранного документа: 0002579116
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e85d

Способ получения 2-(n,n-диалкиламинометил)стиролов, содержащих гетероциклический фрагмент

Изобретение относится к способу получения 2-(N,N-диалкиламинометил)стиролов, содержащих гетероциклический фрагмент общей формулы:
Тип: Изобретение
Номер охранного документа: 0002575176
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.32d6

Способ получения 1-гексена из этилена методом тримеризации

Изобретение относится к способу получения 1-гексена из этилена методом тримеризации, включающему использование каталитической системы, состоящей из комплекса хрома общей формулы [CrCl(HO)((PhP(1,2-СН)Р(Ph)(1,2-СН)СН=CR)], где R - водород или метальная группа, активатора, в качестве которого...
Тип: Изобретение
Номер охранного документа: 0002581052
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3b38

Катализатор метатезисной полимеризации дициклопентадиена, содержащий тиобензилиденовый фрагмент и способ его получения

Изобретение относится к области катализа и касается производства катализаторов метатезисной полимеризации дициклопентадиена. Катализатор общей формулы (1) где заместитель R выбран из группы: R=i-Pr, R=n-CH, R=Ph или R=CHCOOH-o. Способ получения катализатора включает следующие стадии....
Тип: Изобретение
Номер охранного документа: 0002583790
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.5162

Способ получения 2-аминометилстиролов, содержащих гетероциклический фрагмент

Изобретение относится к способу получения 2-(N,N-диалкиламинометил)стиролов, содержащих гетероциклический фрагмент общей формулы: о
Тип: Изобретение
Номер охранного документа: 0002596198
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5167

Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал

Изобретение относится к способу получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер. Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер включает смешивание дициклопентадиена по крайней мере с одним из...
Тип: Изобретение
Номер охранного документа: 0002596192
Дата охранного документа: 27.08.2016
+ добавить свой РИД