×
07.06.2019
219.017.74eb

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области антенных измерений и может быть использовано при проведении экспериментальных проверок, испытаний и исследований антенных систем. Способ определения коэффициента направленного действия (КНД) антенны включает измерение нормированной диаграммы направленности антенны (ДНА) в двух меридианных ортогональных сечениях. При этом пространственная ДНА представляется конечным множеством дискретных значений, измеренных в двух меридианных ортогональных сечениях и интерполированных между ними в экваториальных плоскостях по дуге эллипса, вычисление КНД антенны производится как отношение площадей поверхностей шара единичного радиуса к поверхности интерполированной ДНА. Технический результат заключается в снижении относительной методической погрешности определения КНД антенны, при сохранении простоты, оперативности и доступности получения результата. 1 ил.

Изобретение относится к области антенных измерений и может быть использовано при проведении экспериментальных проверок, испытаний и исследований антенных систем.

Коэффициент направленного действия (КНД) является одной из числовых характеристик антенны, которая оценивает ее способность концентрировать энергию на главном направлении излучения (или приема) и определяет зависимость коэффициента усиления (КУ) антенны от направления излучения (или приема).

КНД антенны, относительно изотропного излучателя, однозначно определяется значениями нормированной ДНА по мощности (F2(θ, ϕ)) измеренными в сферической системе координат [1, стр. 445, 446]:

Сложность измерения значений нормированной ДНА по мощности в сферической системе координат, с требуемой точностью (дискретностью), затрудняет практическое применение формулы (1). На практике ДНА измеряется в двух ортогональных сечениях, при (ϕ=0 и ϕ=π/2, и применяются различные способы (формулы) определения КНД.

Известен способ определения КУ (G) антенны [2, стр. 281-283] методом сравнения (замещения), включающий измерения и сравнения уровней мощности сигналов излучаемых от испытуемой (Р) и эталонной (Р0) с известным КУ (G0) антенн, при одинаковых условиях эксперимента:

Недостатками способа являются необходимость проведения эксперимента с применением специальной измерительной трассы (наклонной или вертикальной) и использование дополнительного оборудования. Методическая погрешность способа соизмерима с инструментальной и в значительной мере определяется условиями интерференции. Это накладывает дополнительные требования к измерительной трассе и оборудованию.

Известен способ определения КУ антенны методом сравнения с эталонной антенной и устройство для его осуществления [3], обеспечивающий повышение точности измерения до 7%, за счет понижения измеряемого уровня. Недостатком способа является большое количество оборудования (до 10 единиц), сложность и длительность измерения (в каждой точке измерение занимает до 5 минут).

Известен способ определения КНД антенны [4, стр. 28], включающий измерение и построение ее нормированной ДНА в двух меридианных ортогональных сечениях, определение их ширины по уровню половинной мощности, представление модели ДНА в виде телесного угла с одинаковой интенсивностью излучения, образованного меридианными ортогональными сечениями по уровню половинной мощности, и отсутствия побочного излучения, определение КНД антенны, как отношение площадей поверхности сферы, единичного радиуса, к сферической поверхности телесного угла модели нормированной ДНА:

где Ω - телесный угол, представляющий идеализированную нормированную ДНА по мощности, рад;

θx и θy - ширина ортогональных сечений ДНА по уровню половинной мощности, градусы.

Достоинством данного способа являются простота, оперативность и доступность определения КНД антенны, недостатком - высокая относительная методическая погрешность способа, соизмеримая с инструментальной до 25%, и зависит от субъективного выбора коэффициента в числителе.

В качестве прототипа взят способ определения КНД антенны [4, стр. 28], включающий измерение нормированной ДНА в двух меридианных ортогональных сечениях, представление нормированной ДНА ее средним значением по двух меридианным ортогональным сечениям, вычисление КНД антенны по формуле:

Достоинством данного способа является оперативность и доступность определения КНД антенны по измеренным меридианным ортогональным сечениям.

Недостатком является зависимость относительной методической погрешности способа от асимметрии ДНА, которая достигает 12%, при асимметрии 0,5.

Технический результат предлагаемого способа заключается в снижения относительной методической погрешности определения КНД антенны, при сохранении простоты, оперативности и доступности получения результата.

Технический результат достигается тем, что в известном способе, включающий измерение нормированной ДНА в двух меридианных ортогональных сечениях, дополнительно пространственная ДНА представляется конечным множеством дискретных значений, измеренных в двух меридианных ортогональных сечениях и интерполированных между ними в экваториальных плоскостях по дуге эллипса, вычисление КНД антенны, как отношение площадей поверхности шара, единичного радиуса, к поверхности интерполированной ДНА:

где: m и n - порядковые номера М и N дискретизаций углов с шагом Δθ и Δϕ в меридианной и экваториальной плоскостях, соответственно;

{[Fi(m, n)]i} - множество матриц конечных дискретных значений ДНА, интерполированных в i=1, 2, 3, 4 квадрантах экваториальной плоскости;

- интерполированные значения ДНА по дуге эллипса в i-том квадранте экваториальной плоскости;

Fx(m,n) и Fy(m,n) - измеренные значения ДНА в двух меридианных ортогональных сечениях (вершинах эллипса).

Простота, оперативность и доступность определения КНД антенны достигается тем, что выполняется совместно с обработкой результатов измерений ДНА в двух ортогональных сечениях одним программным продуктом.

Сравнительный анализ показывает, что предложенный способ отличается от известного, наличием нового представления пространственной модели нормированной ДНА, в виде множества измеренных ее значений в двух меридианных ортогональных сечениях и интерполяционных значений между ними в экваториальных плоскостях по дуге эллипса, полуоси которого определяются меридианными ортогональными сечениями.

При изучении известных решений в данной области техники указанная совокупность признаков, отличающихся от прототипа, не была выявлена, что указывает на «новизну» заявленного изобретения.

На фиг. 1а представлена пространственная модель основного лепестка нормированной ДНА по мощности в сферической системе координат в виде измеренных значений в двух меридианных ортогональных сечениях F(θ,0),

F(θ,π/2) и интерполяционных значений между ними F(m,n). Узловые значения показаны жирными точками, интерполированные - светлыми точками.

На фиг. 1б представлены экваториальные сечения модели ДНА предлагаемого способа, в виде эллипса и способа прототипа, в виде двух окружностей, полученных от вращения двух ортогональных сечений нормированной ДНА относительно основного направления излучения.

Сущность предлагаемого способа заключается в том, что пространственная модель ДНА представляется конечным множеством узловых значений, измеренных в двух меридианных ортогональных сечениях и интерполированных значений между ними (фиг. 1а).

Измеренные значения ДНА в двух меридианных ортогональных сечениях являются исходными данными для определения КНД, которые могут быть представлены в виде матриц-столбцов квадрантов экваториальной плоскости:

где: θ ∈ [0…π] - меридианные угловые координаты;

ϕ ∈ [0, (i-1)π/2] - экваториальные угловые координаты;

i = 1, 2, 3, 4 - квадранты экваториальной плоскости.

Из теории электромагнитного поля известно, что значение ДНА в дальней зоне излучения, есть результат сложения комплексных уровней напряженности поля, создаваемых элементами антенны (распределением тока в антенне) и описывается монотонными тригонометрическими функциями. Проекция экваториального сечения пространственной асимметричной ДНА на плоскость (ху) представляет единственный эллипс, построенный на двух окружностях, полученных от вращения двух измеренных меридианных ортогональных сечений (фиг 1б).

Множество проекций экваториальных сечений асимметричной ДНА представляют семейством эллипсов с различным эксцентриситетом, полуоси которых имеют направления ϕ ∈ [0, (i-1)π/2], а их модули определяются:

Монотонность изменения ДНА в экваториальной плоскости по дуге эллипса, осями которого являются меридианные ортогональные сечения, позволяет применить интерполяцию между ними.

Интерполированные значения пространственной ДНА, между меридианными ортогональными сечениями i-го квадранта экваториальной плоскости по дуге эллипса, выражается через его текущий радиус [5, стр. 1]:

Интерполяция пространственной ДНА представляется конечным множеством узловых и интерполированных точек, образующих сетку элементов сферической поверхности различной выпуклости, как функция дискретных значений углов меридианной и экваториальной плоскостей:

где m и n - порядковые номера М и N дискретизаций углов в меридианной и экваториальной плоскостях, с равномерным шагом Δθϕ.

Конечные значения пространственной ДНА включают дискретные значения, измеренные Fx(m,n) и Fy(m,n) в двух меридианных ортогональных сечениях и интерполированные между ними i-го квадранта m-экваториальной плоскости по дуге эллипса:

По значениям Fi(m,n) составляются матрицы интерполированных значений ДНА, между меридианными ортогональными сечениями i-го квадранта экваториальной плоскости и объединяются в i- множество матриц:

Вычисляется КНД антенны, как отношение площадей поверхности шара единичного радиуса, к поверхности интерполированной ДНА, по формуле (1):

.

Предлагаемый способ определения КНД антенны реализован программно совместно с обработкой результатов измерения и построения ДНА.

Относительная методическая погрешность предлагаемого способа определения КНД (D) определяется шагом дискретизации, оценивается экспериментально, методом ее сравнения с калиброванным КНД «эталонной антенны» (Dэ):

При сравнении измеренного КНД с калибровочным значением измерительной антенны П6-33А с асимметрией 0,5 [6, стр. 40], относительная методическая погрешность составила δ=5%, что значительно ниже, чем в способе прототипе δ=12,5%. Объясняется это тем, что в способе прототипе экваториальное сечение ДНА представляется средней окружностью, полученной от вращения двух ее ортогональных сечений, относительно направления излучения, а в предлагаемом способе - эллипсом.

Источники информации:

1 Н.П. Гавель, А.Д. Истрашин, Ю.К. Муравьев, В.П. Серков. Антенны, часть 2 Ленинград. Военная краснознаменная академия связи, 1963 г., 512 с.

2 Карл Ротхаммель. Антенны, том 2. М:, ДАНВЕЛ, 2005 г., 450 с.

3 Способ определения коэффициента усиления антенны методом сравнения с эталонной антенной и устройство для его осуществления. Патент RU 2335779 С2. Бюллетень №28, от 10.10.2008 г.

4 О.В. Попов и др. Методы измерения характеристик антенно-фидерных устройств. Ленинград. Военная академия связи им. С.М. Буденного, 1990 г., 182 с.

5 Эллипс. Формулы, признаки и свойства эллипса. Сайт 2017 г. URL: http://ru.onlinemschool.com/math/formula/ellipse/ (дата обращения: 09.04.2017).

6 Антенна измерительная П6-33. Техническое описание и инструкция по эксплуатации. 1977 г., 49 с.


СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
Источник поступления информации: Роспатент

Showing 41-50 of 244 items.
20.01.2018
№218.016.1657

Способ наведения управляемого боеприпаса

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Для наведения управляемого боеприпаса определяют координаты цели, подсвечивают область подстилающей поверхности лазерным излучением, захватывают и наводят самонаводящийся боеприпас...
Тип: Изобретение
Номер охранного документа: 0002635299
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.17c3

Способ определения дальности и радиальной скорости цели в рлс с непрерывным излучением и устройство его реализующее

Изобретение относится к радиолокации и может использоваться в радиотехнических системах с непрерывным излучением для определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Достигаемый технический результат - увеличение дальности обнаружения...
Тип: Изобретение
Номер охранного документа: 0002635366
Дата охранного документа: 13.11.2017
13.02.2018
№218.016.2075

Способ определения угловых координат на источник направленного оптического излучения

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой...
Тип: Изобретение
Номер охранного документа: 0002641637
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.3157

Полуактивная головка самонаведения

Изобретение относится к головкам самонаведения, используемым для формирования сигналов управления высокоточным оружием. Полуактивная головка самонаведения содержит последовательно соединенные многоканальное приемное устройство, сумматор, пороговое устройство, первый селектор импульсов и блок...
Тип: Изобретение
Номер охранного документа: 0002645046
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3a81

Способ измерения морфологической мультифрактальной сигнатуры

Изобретение относится к области радиотехники и может быть использовано в системах автоматизированного обнаружения и распознавания наземных объектов на радиолокационных изображениях земной поверхности. Техническим результатом является повышение точности измерения морфологической...
Тип: Изобретение
Номер охранного документа: 0002647675
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.46a4

Способ определения содержания нефтяных топлив в грунтах

Использование: для определения содержания нефтяных топлив в грунтах «на месте». Сущность изобретения заключается в том, что способ определения содержания нефтяных топлив в грунтах включает определение типа грунта, определение типа нефтяного топлива, установление содержания концентрации топлива...
Тип: Изобретение
Номер охранного документа: 0002650437
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.47b8

Способ снижения радиолокационной заметности воздухозаборника самолетного двигателя и устройство его реализующее

Изобретение относится к области радиолокационной маскировки объектов и может быть использовано для снижения эффективной площади рассеяния воздухозаборника самолетного двигателя в передней полусфере. Техническим результатом заявленного изобретения является повышение эффективности снижения...
Тип: Изобретение
Номер охранного документа: 0002650701
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4d39

Комплекс энергогенерирующий

Настоящее изобретение относится к энергетике, к задаче прямого преобразования тепловой энергии в электрическую посредством термоэлектрической и термоэлектронной эмиссии, в частности к получению электрической энергии за счет тепла газов, образующихся при термохимическом преобразовании топлива, и...
Тип: Изобретение
Номер охранного документа: 0002652241
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4e14

Домкрат винтовой телескопический

Изобретение относится к области наземного обслуживания транспортных средств, для ремонта и технического осмотра. Домкрат содержит корпус с опорной площадкой, подъемное устройство с гайкой и втулкой, механизм привода. На торце гайки установлена муфта, содержащая шайбу, сепаратор, полумуфту,...
Тип: Изобретение
Номер охранного документа: 0002652364
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4f44

Способ статической балансировки кривошипно-шатунной группы

Изобретение относится к области машиностроения, в частности к статической балансировке кривошипно-шатунной группы. Способ статической балансировки кривошипно-шатунной группы заключается в удалении дисбаланса путем снятия части металла на противовесах коленчатого вала. При статической...
Тип: Изобретение
Номер охранного документа: 0002652694
Дата охранного документа: 28.04.2018
Showing 1-2 of 2 items.
19.01.2018
№218.015.ffb6

Способ построения панорамного радиолокационного изображения объекта

Изобретение относится к области исследования радиолокационных характеристик объекта и может быть использовано при проведении исследований радиолокационной заметности, оценки эффективности мероприятий по ее снижению, а также для получения исходных данных для решения задач идентификации и...
Тип: Изобретение
Номер охранного документа: 0002629372
Дата охранного документа: 29.08.2017
29.05.2018
№218.016.58c6

Способ обнаружения работы каналов управления беспилотным летательным аппаратом

Изобретение относится к технике радиоэлектронной борьбы и может быть использовано в аппаратуре радиоразведки техники радиоэлектронного подавления (РЭП) системы управления летательными аппаратами (БЛА). Эффективное РЭП БЛА, включающее постановку помех или перехват управления БЛА, возможно по...
Тип: Изобретение
Номер охранного документа: 0002653530
Дата охранного документа: 11.05.2018
+ добавить свой РИД