×
24.05.2019
219.017.5e3d

СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов золей наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов, красителей, композитов и применяться в других областях, где есть потребность в таких растворах. Предложен cпособ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама, включающий отжиг паравольфрамата аммония при температурах 550÷800°С в течение 10÷120 мин в открытой емкости, охлаждение продукта отжига до 20÷25°С, приготовление водной суспензии продукта отжига в дистиллированной воде, ультразвуковую обработку полученной водной суспензии в течение 1÷3 ч. Технический результат состоит в получение водных коллоидных растворов кристаллических наночастиц WOвысокой степени чистоты. 4 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов (золей) наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов, красителей, композитов и применяться в других областях, где есть потребность в таких растворах.

Нанодисперсный триоксид вольфрама - перспективный материал для химической промышленности. При переходе в нанокристаллическое состояние у этого оксида появляются необычные для крупнокристаллического состояния свойства, например, газохромные, электрохромные, фотохромные, сверхпроводниковые [С. Santato, М. Odziemkowski, М. Ulmann, and J. Augustynski. Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications // J. Am. Chem. Soc. 2001, 123, 10639-10649].

В настоящее время известны методы получения триоксида вольфрама в порошкообразном состоянии, например, в [P.J. Hwan, K.Y. Jin, P.S. Min, L.J. Won, K.R. Kwon. Manufacturing method of high purity tungsten trioxide powder using waste hard metal and tungsten trioxide manufactured by the method. KR 20100024032, Publication Date: 05.03.2010] описывается способ получения триоксида вольфрама путем обезуглероживания карбида вольфрама, в [Chang-Hoon Shin, et. al. A Study on the Preparation of Tungsten Oxide powders Using Emulsion Evaporation Methods // J. of the Korean Cer. Soc., 1998, V. 35, №.6, 543] раскрывается способ изготовления триоксида вольфрама методом испарения эмульсии. Также используют золь-гель метод, гидротермальный, электрохимическое анодирование, электрохимическое осаждение [Н. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, and K. Kalantar-zadeh. Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications Adv. Fund. Mater. 2011, 21, 2175-2196].

Недостатками предлагаемых методов является низкая чистота получаемого продукта, гидратированность поверхности, присутствие аморфной фазы, а также необходимость использования специального оборудования.

Таким образом, существует много методов получения триоксида вольфрама в порошкообразном виде, но практически отсутствуют данные о методах синтеза коллоидных растворов кристаллических наночастиц WO3, которые востребованы в химической технологии, в частности, необходимы для нанесения на поверхность разнообразных носителей для применения в газовых сенсорах, электрохромных устройствах, катализаторах [А.В. Александров, Н.Н. Гаврилова. Влияние условий синтеза на коллоидно-химические свойства гидрозолей триоксида вольфрама // Успехи в химии и химической технологии. 2013, Т. XXVII, №2, 47-55].

На данный момент известно несколько методов получения коллоидных растворов, включающих триоксид вольфрама и другие оксиды металлов. Например, в патенте [С. Wen, Z. Quanrao, Y. Ying, Z. Jing, J. Aiping, V. Volkove, G. Zahanawa. Method for preparing stable sol of composite oxides of vanadium and tungsten. CN 101049970, Publication Date: 10.10.2007] описывается технология получения золей V2O5-WO3 в гидротермальной установке, а в патенте [I. Hiroyuki. Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body. JP 4507066, Publication Date: 21.07.2010] раскрывается способ получения золя триоксида вольфрама, содержащего диоксид титана, путем термической обработки раствора, состоящего из геля титановой кислоты, аммиака и соединения вольфрама.

Основным недостатком предложенных методов является то, что в системе присутствуют посторонние элементы и примеси.

В качестве еще одного способа получения коллоидных растворов триоксида вольфрама используют метод пептизации. Так, известен способ получения коллоидного раствора нанокристаллического триоксида вольфрама [А.И. Недоступ, А.В. Александров, Н.Н. Гаврилова. Синтез золей триоксида вольфрама, стабилизированных неионогенным ПАВ SURFYNOL 465 // Успехи в химии и химической технологии. Т. XXVIII. 2014, №2, 120-122], в котором в качестве прекурсоров используют паравольфрамат аммония (NH4)10W12O41⋅xH2O, соляную кислоту HCl, неионогенный ПАВ Surfynol 465 (этоксилат). Сущность синтеза заключается в том, что триоксид вольфрама осаждали из раствора паравольфрамата аммония (ПВА) (VПBA=50 мл) раствором соляной кислоты при мольном соотношении [H+]/[W6+], равном 24,5. Концентрацию ПВА поддерживали в пределах от 0,26 до 7,00 ммоль/л. Осаждение проводили при интенсивном перемешивании. Температуру синтеза варьировали от 20 до 80°С. Полученный осадок отфильтровывали и промывали на воронке Бюхнера дистиллированной водой с целью удаления электролита. Согласно данным рентгенофазового анализа, при температурах ниже 70°С получаемый осадок являлся рентгеноаморфным, а при температурах 70-80°С - кристаллическим. Фазовый состав частиц получаемого в этих условиях осадка соответствовал WO3⋅2H2O. Отмытый осадок диспергировали ультразвуком в растворах стабилизатора - неионногенного ПАВ Surfynol 465 с концентрацией от 1 до 5 (в единицах ККМ), при величинах рН от 1 до 8. Величину рН регулировали добавлением растворов HCl или NaOH. Ультразвуковую обработку проводили на приборе УЗДН-А, время обработки составляло 2 минуты. Образование устойчивых золей триоксида вольфрама наблюдалось лишь при pH=3 и концентрациях стабилизатора в диапазоне 1-2 ККМ.

Данный способ был выбран в качестве прототипа.

Недостатком прототипа является то, что в результате осаждения при невысоких температурах образуется незакристаллизованный продукт, а при температурах 70-80°С - гидратированная форма триоксида вольфрама.

Еще одним недостатком является то, что золи триоксида вольфрама получают только в кислой среде, при этом в системе присутствуют посторонние хлорид-анионы.

Изобретение направлено на изыскание способа получения беспримесных водных коллоидных растворов кристаллических наночастиц WO3, что позволяет использовать их в различных областях химии, в частности, электрохимии.

Технический результат достигается тем, что предложен способ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама, включающий отжиг паравольфрамата аммония при температурах 550÷800°С в течение 10÷120 мин в открытой емкости, охлаждение продукта отжига до 20÷25°С, приготовление водной суспензии продукта отжига в дистиллированной воде, ультразвуковую обработку полученной водной суспензии в течение 1÷3 ч.

Изобретение проиллюстрировано следующими фигурами.

Фиг. 1. Результаты дифференциально-термического (красная кривая) и термогравиметрического анализа для исходного паравольфрамата аммония.

Фиг. 2. Рентгенограмма продукта отжига паравольфрамата аммония при температуре 700°С и продолжительности 60 мин.

Фиг. 3. Микрофотография продукта отжига паравольфрамата аммония при температуре 700°С и продолжительности 60 мин после ультразвуковой обработки в течение 3 ч.

Фиг. 4. Данные динамического светорассеяния для водного коллоидного раствора триоксида вольфрама, полученного ультразвуковой обработкой в течение 3 ч водной суспензии продукта отжига паравольфрамата аммония при температуре 700°С и продолжительности 60 мин.

Температура отжига выбрана из тех соображений, что при температуре менее 550°С кристаллизация триоксида вольфрама происходит не в полной мере и разложение исходного паравольфрамата аммония происходит не полностью, что показано на Фиг. 1, а при температуре свыше 800°С наблюдается формирование частиц с большим размером.

Продолжительность отжига при заданной температуре обусловлена тем, что продолжительности менее 10 мин недостаточно для образования беспримесного триоксида вольфрама, а увеличение продолжительности отжига свыше 120 мин не оказывает существенного влияния на достижение технического результата.

Охлаждение продукта отжига проводят до температур 20÷25°С, поскольку это стандартный диапазон комнатной температуры.

Продолжительность ультразвуковой обработки обусловлена тем, что при времени обработки менее 1 ч не образуется водный коллоидный раствор наночастиц WO3, а увеличение времени обработки более 3 ч не оказывает существенного влияния на достижение технического результата.

Ультразвуковую обработку проводили на приборе Bandelin Sonoplus 3200, частотой 21±1 кГц.

Сущность изобретения заключается в том, что на первом этапе синтеза использовано термическое разложение паравольфрамата аммония в результате которого образуются беспримесные кристаллические агрегаты частиц WO3, а на последнем этапе использована ультразвуковая обработка водной суспензии продукта отжига, что приводит к разрушению агрегатов триоксида вольфрама и образованию водного коллоидного раствора беспримесных кристаллических наночастиц триоксида вольфрама.

Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.

Пример. 1.

Отжигали навеску паравольфрамата аммония в муфельной печи в открытом алундовом тигле при температуре 700°С и продолжительности 60 мин. Полученный продукт представлял собой беспримесный однофазный кристаллический продукт WO3 [PDF2 №43-1035], что проиллюстрировано Фиг. 2., со средним размером частиц в агрегатах около 90 нм. Далее отожженный образец остужали до комнатной температуры и готовили его водную суспензию, которую затем подвергали ультразвуковой обработке в течение 3 ч и в результате получали беспримесный водный коллоидный раствор кристаллических наночастиц WO3, преимущественно с размером 85 нм, что показано на Фиг. 3 и Фиг. 4.

Пример 2.

По примеру 1, отличающийся тем, что температура отжига составляла 800°С, продолжительность отжига составляла 10 мин. Полученный продукт представлял собой беспримесный однофазный кристаллический продукт WO3 [PDF2 №43-1035] со средним размером частиц в агрегатах около 95 нм. Далее отожженный образец остужали до комнатной температуры и готовили его водную суспензию, которую затем подвергали ультразвуковой обработке в течение 2 ч и в результате получали беспримесный водный коллоидный раствор кристаллических наночастиц WO3, преимущественно с размером 90 нм.

Пример 3.

По примеру 1, отличающийся тем, что температура отжига составляла 550°С, продолжительность отжига составляла 120 мин. Полученный продукт представлял собой беспримесный однофазный кристаллический продукт WO3 [PDF2 №43-1035] со средним размером частиц в агрегатах около 80 нм. Далее отожженный образец остужали до комнатной температуры и готовили его водную суспензию, которую затем подвергали ультразвуковой обработке в течение 1 ч и в результате получали беспримесный водный коллоидный раствор кристаллических наночастиц WO3, преимущественно с размером 80 нм.

Предложенный способ позволяет получать беспримесные водные коллоидные растворы кристаллических наночастиц WO3, что дает возможность их использования в различных областях химии, например в электрохимии.

Способ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама, включающий отжиг паравольфрамата аммония при температурах 550÷800°С в течение 10÷120 мин в открытой емкости, охлаждение продукта отжига до 20÷25°С, приготовление водной суспензии продукта отжига в дистиллированной воде, ультразвуковую обработку полученной водной суспензии в течение 1÷3 ч.
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
Источник поступления информации: Роспатент

Showing 41-50 of 50 items.
22.02.2019
№219.016.c5bd

Индикаторная полоса риб-диазо-тест для индикаторного средства по определению подлинности лекарственного вещества

Настоящее изобретение относится к аналитической химии, конкретно к индикаторной полосе РИБ-Диазо-Тест для индикаторного средства по определению подлинности лекарственного вещества. Данная индикаторная полоса состоит из целлюлозы с закрепленным на ней индикатором, в качестве которого используют...
Тип: Изобретение
Номер охранного документа: 0002680391
Дата охранного документа: 20.02.2019
02.03.2019
№219.016.d206

Мембрана ионоселективного электрода для определения ионов кальция

Изобретение относится к области ионометрии, а именно к разрабоке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем, и может быть использовано для прямого потенциометрического определения активности ионов кальция в водных растворах: природных, сточных вод, а...
Тип: Изобретение
Номер охранного документа: 0002680865
Дата охранного документа: 28.02.2019
30.03.2019
№219.016.fa1a

Мембрана ионоселективного электрода для определения уранил-иона

Изобретение относится к области аналитической химии и может быть использовано для неразрушающего контроля и автоматического регулирования содержания уранил-ионов в водных растворах. Предложена мембрана ионоселективного электрода для определения уранил-иона, содержащая поливинилхлорид в качестве...
Тип: Изобретение
Номер охранного документа: 0002683423
Дата охранного документа: 28.03.2019
24.05.2019
№219.017.5d8a

Мембрана ионоселективного электрода для определения ионов кадмия

Изобретение относится к области ионометрии, а именно к разработке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем. Предлагаемое изобретение предназначено для прямого потенциометрического определения активности катионов кадмия в водных растворах и может быть...
Тип: Изобретение
Номер охранного документа: 0002688951
Дата охранного документа: 23.05.2019
30.05.2019
№219.017.6b5f

Способ получения люминесцирующего стекла

Изобретение относится к области получения фторцирконатных и фторгафнатных люминесцирующих стекол, легированных трифторидом церия. В шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF; LaF; AlF; NaF, где в качестве фторида металла IV группы используют либо ZrF,...
Тип: Изобретение
Номер охранного документа: 0002689462
Дата охранного документа: 28.05.2019
01.11.2019
№219.017.dc1b

Способ получения гетероструктуры co/pbzrtio

Изобретение относится к области композиционных гетероструктур, обладающих высоким низкочастотным магнитоэлектрическим эффектом, состоящих из слоя ферромагнетика и керамической сегнетоэлектрической подложки, конкретно к способу получения слоя металлического кобальта на поверхности керамики...
Тип: Изобретение
Номер охранного документа: 0002704706
Дата охранного документа: 30.10.2019
03.07.2020
№220.018.2dfc

Мембрана ионоселективного электрода для определения лидокаина

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания лидокаина в водных растворах. Предложена мембрана ионоселективного электрода для определения...
Тип: Изобретение
Номер охранного документа: 0002725157
Дата охранного документа: 30.06.2020
11.05.2023
№223.018.53e1

Способ получения катализатора полного окисления метана на основе lnfesbo (ln=la-sm) со структурой розиаита

Изобретение относится к области гетерогенного катализа, конкретно к катализаторам окисления метана на основе сложных оксидов с нанесенными наночастицами благородных металлов, обладающим улучшенными каталитическими характеристиками, и может быть использовано в процессе очистки промышленных...
Тип: Изобретение
Номер охранного документа: 0002795468
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.5958

Состав мембраны ионоселективного электрода для определения ионов свинца

Изобретение относится к ионометрии, а именно к разработке составов мембран с ионной проводимостью для ионоселективных электродов, избирательных к ионам свинца. Состав мембраны ионоселективного электрода для определения ионов свинца включает поливинилхлорид в качестве полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002762370
Дата охранного документа: 20.12.2021
15.05.2023
№223.018.595a

Состав мембраны ионоселективного электрода для определения ионов свинца

Изобретение относится к ионометрии, а именно к разработке составов мембран с ионной проводимостью для ионоселективных электродов, избирательных к ионам свинца. Состав мембраны ионоселективного электрода для определения ионов свинца включает поливинилхлорид в качестве полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002762370
Дата охранного документа: 20.12.2021
Showing 21-27 of 27 items.
22.12.2019
№219.017.f105

Способ регенерации костной ткани челюстей

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано в костно-пластической хирургии дефектов костной ткани челюстей при дентальной имплантации, а также в реконструктивной хирургии пародонта. Способ включает отслоение слизисто-надкостничного лоскута, подготовку...
Тип: Изобретение
Номер охранного документа: 0002709723
Дата охранного документа: 19.12.2019
01.04.2020
№220.018.1226

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике, а именно к жидкостному ракетному двигателю (ЖРД), работающему по схеме с дожиганием генераторного газа. Жидкостный ракетный двигатель содержит газовод и опору крепления, при этом опора крепления установлена на газоводе, выполнена охлаждаемой и содержит...
Тип: Изобретение
Номер охранного документа: 0002718103
Дата охранного документа: 30.03.2020
18.07.2020
№220.018.33c0

Биокомплекс для стимуляции восстановления микроархитектоники костной ткани челюстно-лицевой области

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано для стимуляции регенерации костной ткани в челюстно-лицевой области при введении предложенной композиции в дефекты костной ткани. Биокомплекс для стимуляции восстановления микроархитектоники костной...
Тип: Изобретение
Номер охранного документа: 0002726821
Дата охранного документа: 15.07.2020
02.08.2020
№220.018.3c03

Камера жидкостного ракетного двигателя, работающего по безгазогенераторной схеме (варианты)

Изобретение относится к жидкостным ракетным двигателям. Камера жидкостного ракетного двигателя, работающего по безгазогенераторной схеме, содержащая корпус камеры, смесительную головку, состоящую из периферийной и центральной частей, наружное днище, магистрали подвода горючего и окислителя и...
Тип: Изобретение
Номер охранного документа: 0002728657
Дата охранного документа: 31.07.2020
20.04.2023
№223.018.4d9b

Нанодисперсная пластическая биоинженерная композиция на основе диоксида церия для восполнения объема костной ткани

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано в костно-пластической хирургии дефектов костной ткани челюстей при дентальной имплантации, а также в реконструктивной хирургии пародонта и направленной костной регенерации для восполнения объема костной ткани....
Тип: Изобретение
Номер охранного документа: 0002793324
Дата охранного документа: 31.03.2023
21.05.2023
№223.018.692f

Биокомплекс для стимуляции регенерации и ремоделирования тканей

Изобретение относится к области медицины, в частности к стоматологии, а именно к биокомплексу для стимуляции регенерации и ремоделирования тканей пародонта. Предложен биокомплекс для стимуляции регенерации и ремоделирования тканей пародонта, содержащий обогащенную тромбоцитами аутоплазму...
Тип: Изобретение
Номер охранного документа: 0002794464
Дата охранного документа: 18.04.2023
24.05.2023
№223.018.6f8a

Способ получения аэрогеля на основе аморфного диоксида германия

Изобретение относится к области неорганической химии, конкретно, к получению мезопористых монолитных аэрогелей диоксида германия. Способ получения монолитного аэрогеля на основе аморфного диоксида германия основан на золь-гель методе с применением технологии сверхкритической сушки. В качестве...
Тип: Изобретение
Номер охранного документа: 0002796091
Дата охранного документа: 16.05.2023
+ добавить свой РИД