×
19.04.2019
219.017.2e15

Результат интеллектуальной деятельности: БОРТОВАЯ ЦИФРОАНАЛОГОВАЯ АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приборостроения и может найти применение в системах автоматического управления летательными аппаратами. Технический результат - расширение функциональных возможностей. Для достижения данного результата система управления содержит задатчики углов тангажа, курса и крена, первый, второй и третий блоки сравнения, блок свободных гироскопов, блок демпфирующих гироскопов, датчики скорости и высоты полета, датчик текущего значения массы, задатчик опорных сигналов, первый и второй блоки умножения, первый и второй блоки деления, сумматор, блок формирования обратной величины сигнала, блок масштабирования, цифровой блок умножения, цифроаналоговый преобразователь, цифроаналоговый блок умножения, первый, второй и третий суммирующие усилители и исполнительное устройство. 2 ил.

Изобретение относится к бортовым системам автоматического управления летательными аппаратами (регулирования угловых параметров и скоростей), для которых характерны существенно нестационарные условия полета.

Наиболее близким к предлагаемому изобретению является «Система управления угловым движением беспилотного летательного аппарата» [1]. Она содержит последовательно соединенные задатчик угла тангажа и первый блок сравнения; второй блок сравнения; последовательно соединенные задатчик угла крена и третий блок сравнения, а также блок свободных гироскопов, первый, второй и третий выходы которого соединены соответственно с вторыми входами первого, второго и третьего блоков сравнения. В состав «Системы» входят также блок демпфирующих гироскопов, первый, второй и третий суммирующие усилители и исполнительное устройство. При этом первый, второй и третий выходы блока демпфирующих гироскопов соединены с входами первого, второго и третьего суммирующих усилителей соответственно, а выходы этих суммирующих усилителей соединены с первым, вторым и третьим входами исполнительного устройства соответственно.

Существенными признаками прототипа, совпадающими с существенными признаками предлагаемого технического решения является то, что бортовая цифроаналоговая адаптивная система управления летательным аппаратом содержит последовательно соединенные задатчик угла тангажа и первый блок сравнения, второй блок сравнения, последовательно соединенные задатчик угла крена и третий блок сравнения, а также блок свободных гироскопов, блок демпфирующих гироскопов, исполнительное устройство и первый, второй и третий суммирующие усилители, выходы которых соединены с первым, вторым и третьим входами исполнительного устройства соответственно, причем вторые входы первого, второго и третьего блоков сравнения соединены соответственно с первым, вторым и третьим выходами блока свободных гироскопов.

Недостатками известной системы являются ограниченные функциональные возможности в условиях нестационарности параметров движения летательного аппарата, прежде всего скорости и высоты полета и инерционно-массовых характеристик летательного аппарата. Этот недостаток объясняется невозможностью оптимального выбора постоянных значений передаточных чисел системы управления при достаточно глубоком изменении характеристик объекта управления. Постоянство передаточных чисел не только ухудшает качество переходных процессов в каналах стабилизации и управления, но в предельных случаях (очень глубоком изменении характеристик) может привести к потере устойчивости летательного аппарата.

Решаемой в предложенной системе управления технической задачей является расширение функциональных возможностей системы с обеспечением приемлемого качества управления в существенно нестационарных условиях полета.

Указанный технический результат достигается тем, что в известную систему управления угловым движением беспилотного летательного аппарата, содержащую последовательно соединенные задатчик угла тангажа и первый блок сравнения; второй блок сравнения; последовательно соединенные задатчик угла крена и третий блок сравнения, а также блок свободных гироскопов, блок демпфирующих гироскопов, исполнительное устройство и первый, второй и третий суммирующие усилители, выходы которых соединены с первым, вторым и третьим входами исполнительного устройства соответственно, причем вторые входы первого, второго и третьего блоков сравнения соединены соответственно с первым, вторым и третьим выходами блока свободных гироскопов, дополнительно введены последовательно соединенные датчик скорости полета, первый блок умножения, второй вход которого также соединен с выходом датчика скорости полета, второй блок умножения, сумматор, блок формирования обратной величины сигнала и блок масштабирования, последовательно соединенные датчик высоты полета и первый блок деления, выход которого подключен ко второму входу сумматора, последовательно соединенные датчик текущего значения массы и второй блок деления, выход которого подключен к третьему входу сумматора, задатчик опорных сигналов, первый, второй и третий выходы которого подсоединены соответственно ко второму входу второго блока умножения, второму входу первого блока деления и второму входу второго блока деления, задатчик угла курса, подключенный выходом к первому входу второго блока сравнения, цифровой блок умножения, первый, второй и третий входы которого подсоединены соответственно к выходам первого, второго и третьего блоков сравнения, четвертый, пятый и шестой входы подключены соответственно к первому, второму и третьему выходам блока масштабирования, а первый, второй и третий выходы соединены соответственно с первым, вторым и третьим входами цифроаналогового преобразователя, первый, второй и третий выходы которого подсоединены к первым входам соответственно первого, второго и третьего суммирующих усилителей, и цифроаналоговый блок умножения, первый, второй и третий входы которого подключены соответственно к первому, второму и третьему выходам блока демпфирующих гироскопов, четвертый, пятый и шестой входы соединены соответственно с четвертым, пятым и шестым выходами блока масштабирования, а первый, второй и третий выходы соединены со вторыми входами соответственно первого, второго и третьего суммирующих усилителей.

Отличительными признаками предлагаемого технического решения являются следующие: последовательно соединенные датчик скорости полета, первый блок умножения, второй вход которого также соединен с выходом датчика скорости полета, второй блок умножения, сумматор, блок формирования обратной величины сигнала и блок масштабирования, последовательно соединенные датчик высоты полета и первый блок деления, выход которого подключен ко второму входу сумматора, последовательно соединенные датчик текущего значения массы и второй блок деления, выход которого подключен к третьему входу сумматора, задатчик опорных сигналов, первый, второй и третий выходы которого подсоединены соответственно ко второму входу второго блока умножения, второму входу первого блока деления и второму входу второго блока деления, задатчик угла курса, подключенный выходом к первому входу второго блока сравнения, цифровой блок умножения, первый, второй и третий входы которого подсоединены соответственно к выходам первого, второго и третьего блоков сравнения, четвертый, пятый и шестой входы подключены соответственно к первому, второму и третьему выходам блока масштабирования, а первый, второй и третий выходы соединены соответственно с первым, вторым и третьим входами цифроаналогового преобразователя, первый, второй и третий выходы которого подсоединены к первым входам соответственно первого, второго и третьего суммирующих усилителей, и цифроаналоговый блок умножения, первый, второй и третий входы которого подключены соответственно к первому, второму и третьему выходам блока демпфирующих гироскопов, четвертый, пятый и шестой входы соединены соответственно с четвертым, пятым и шестым выходами блока масштабирования, а первый, второй и третий выходы соединены со вторыми входами соответственно первого, второго и третьего суммирующих усилителей.

Предлагаемое построение бортовой цифроаналоговой адаптивной системы управления летательным аппаратом позволяет в достаточно широком диапазоне изменения параметров, обусловливающих его динамические свойства (скорость и высота полета, массоинерционные характеристики) обеспечивать требуемое качество процессов управления. В конечном счете, это дает возможность осуществлять устойчивый полет летательного аппарата и требуемую точность выполнения заданной траектории его движения.

Применение предлагаемой бортовой цифроаналоговой адаптивной системы управления особенно эффективно на высотных летательных аппаратах с большими скоростями полета и большими значениями расходуемой массы топлива.

Предлагаемое техническое решение поясняется схемами фиг.1, 2.

На фиг.1 представлена структурная схема системы.

На фиг.2 представлена структурная схема исполнительного устройства.

Бортовая цифроаналоговая адаптивная система управления (фиг.1) содержит последовательно соединенные датчик скорости полета 1 (ДСП), первый блок умножения 11 (1й БУ), второй вход которого также соединен с выходом датчика скорости полета 1, второй блок умножения 14 (2й БУ), сумматор 15 (С), блок формирования обратной величины сигнала 16 (БФОВС) и блок масштабирования 17 (БМ), последовательно соединенные датчик высоты полета 2 (ДВП) и первый блок деления 12 (1 и БД), выход которого подключен ко второму входу сумматора 15, последовательно соединенные датчик текущего значения массы 3 (ДТМ) и второй блок деления 13 (2й БД), выход которого подключен к третьему входу сумматора 15, задатчик опорных сигналов 10 (ЗОС), первый, второй и третий выходы которого подсоединены соответственно ко второму входу второго блока умножения 14, второму входу первого блока деления 12 и второму входу второго блока деления 13, последовательно соединенные задатчик угла тангажа 19 (ЗУТ) и первый блок сравнения 22 (1й БС), последовательно соединенные задатчик угла курса 20 (ЗУК) и второй блок сравнения 23 (2й БС), последовательно соединенные задатчик угла крена 21 (ЗУКр) и третий блок сравнения 24 (3й БС), цифровой блок умножения 25 (ЦБУ), первый, второй и третий входы которого подсоединены соответственно к выходам первого 22, второго 23 и третьего 24 блоков сравнения, четвертый, пятый и шестой входы подключены соответственно к первому, второму и третьему выходам блока масштабирования 17, а первый, второй и третий выходы соединены соответственно с первым, вторым и третьим входами цифроаналогового преобразователя 26 (ЦАП), первый, второй и третий выходы которого подсоединены к первым входам соответственно первого 7 (1й СУ), второго 8 (2й СУ) и третьего 9 (3й СУ) суммирующих усилителей, и цифроаналоговый блок умножения 18 (ЦАБУ), первый, второй и третий входы которого подключены соответственно к первому, второму и третьему выходам блока демпфирующих гироскопов 4 (БДГ), четвертый, пятый и шестой входы соединены соответственно с четвертым, пятым и шестым выходами блока масштабирования 17, а первый, второй и третий выходы соединены со вторыми входами соответственно первого 7, второго 8 и третьего 9 суммирующих усилителей, выходы которых подключены к первому, второму и третьему входам исполнительного устройства 5 (ИУ), причем вторые входы первого 22, второго 23 и третьего 24 блоков сравнения соединены соответственно с первым, вторым и третьим выходами блока свободных гироскопов 6 (БСГ). Летательный аппарат (ЛА) на фиг.1, а также на фиг.2 показан условно.

В соответствии со схемой на фиг.2 исполнительное устройство 5 бортовой цифроаналоговой адаптивной системы управления содержит последовательно соединенные первый сумматор 27 и первый рулевой привод 28, последовательно соединенные первый инвертор 29, второй сумматор 30 и второй рулевой привод 31 и последовательно соединенные второй инвертор 32, третий сумматор 33 и третий рулевой привод 34, причем первый вход исполнительного устройства подключен ко вторым входам второго 30 и третьего 33 сумматоров, второй вход исполнительного устройства соединен с первым входом первого сумматора 27, входом первого инвертора 29 и третьим входом третьего сумматора 33, а третий вход исполнительного устройства подсоединен ко второму входу первого 27 и третьему входу второго 30 сумматоров и входу второго инвертора 32. Блоки 27, 29, 30, 32 и 33 условно объединены в блок 35 - блок кинематической разводки (БКР).

Таким образом, бортовая цифроаналоговая адаптивная система управления летательным аппаратом содержит два контура:

1 - контур управления и стабилизации летательного аппарата, в состав которого входят звенья 4…9, 19…24;

2 - контур адаптации, в который входят звенья 1…3, 10…18 и 25, 26. Контур управления и стабилизации работает следующим образом. Входные сигналы исполнительного устройства 5 σϑ, σψ, σγ формируются в суммирующих усилителях 7, 8, 9 по законам:

где iв, iн, iэ, ρв, ρн, ρэ - передаточные числа контура управления и стабилизации по позиционным и демпфирующим сигналам, определяемые контуром адаптации системы; ωx, ωy, ωz - угловые скорости вращения ЛА, являющиеся выходными сигналами блока демпфирующих гироскопов 4.

Позиционные сигналы (ϑ-ϑy), (ψ-ψy), (γ-γy) формируются в блоках сравнения 22, 23, 24 по сигналам задатчиков углов тангажа, курса и крена 19, 20, 21 и сигналам, пропорциональным углам ориентации летательного аппарата - выходным сигналам блока свободных гироскопов 6.

Поканальные управляющие сигналы σϑ, σψ, σγ в блоке кинематической разводки исполнительного устройства 5 распределяются по рулевым приводам летательного аппарата по соответствующим законам; например, для летательного аппарата с тремя рулевыми поверхностями, расположенными по схеме, приведенной на фиг.1, 2 в блоке ЛА, эти законы имеют вид [2, стр.7]:

где - входные сигналы рулевых приводов 28, 31, 34, входящих в состав исполнительного устройства 5; kψ, kγ - коэффициенты кинематической разводки, реализуемые в сумматорах 27, 30, 33 блока кинематической разводки (фиг.2). Определение величин коэффициентов кинематической разводки может быть выполнено, например, в соответствии с формулами:

где - аэродинамические коэффициенты эффективности первого и второго рулей (при схеме расположения рулей по фиг.1, 2) относительно осей крена и курса летательного аппарата. Формулы (3) получены в предположении равенства коэффициентов эффективности для второго и третьего рулей.

Контур адаптации работает следующим образом.

В первом приближении уравнения углового движения летательного аппарата в канале тангажа, например, по [3, стр.616] описываются в виде:

где a, b - динамические коэффициенты летательного аппарата по демпфированию и эффективности рулей соответственно,

- угол отклонения рулей высоты исполнительным устройством (рулевым приводом) летательного аппарата.

Полагая для простоты изложения дальнейших рассуждений исполнительное устройство идеальным, т.е. положив , из уравнений (1), (4) можно получить описание процессов регулирования в замкнутом контуре «система управления - летательный аппарат» в виде:

или

Характеристическое уравнение замкнутой системы управления в соответствии с (6) имеет вид:

Уравнение (7) позволяет сопоставить параметры закона управления (1) iв и ρв с динамическими коэффициентами летательного аппарата a и b. Для обеспечения постоянства характеристик устойчивости и качества переходных процессов необходимо обеспечить в процессе полета выполнение условий стабильности (инвариантности) коэффициентов характеристического уравнения, т.е.

В уравнениях (5) и, соответственно, (8) коэффициент а, характеризующий собственное демпфирование летательного аппарата, достаточно мал, слабо изменяется и не является характерным, доминирующим в сравнении с параметром bρв, определяющим демпфирование замкнутой системы в целом. Поэтому условия сохранения требуемых показателей устойчивости и качества переходных процессов исходя из (8) могут быть определены как

где b - коэффициент эффективности органов управления (рулевых поверхностей) летательного аппарата, определяемый в соответствии с [3, стр.618] формулой

- производная аэродинамического коэффициента эффективности по отклонению рулей,

S,ba - характерные геометрические размеры (площадь и средняя

аэродинамическая хорда) летательного аппарата,

Iz - момент инерции летательного аппарата относительно поперечной оси,

q - скоростной напор:

ρ - плотность воздуха на текущей высоте полета, ρ=ρ(Н),

v - скорость полета.

Если считать, что аэродинамический коэффициент является, в основном, функцией числа М (отношения скорости полета к скорости звука) и может быть принят постоянным для достаточно широкой области высот и скоростей полета, то его можно считать стабильным в окрестности балансировочных значений текущих углов ориентации летательного аппарата.

Момент инерции Iz для беспилотных летательных аппаратов также

меняется незначительно. Таким образом, основной причиной нестационарности динамического коэффициента b (10) является скоростной напор q. Исходя из уравнений (9) и на основе уравнений (10), (11) с учетом изложенного функцию адаптации λ необходимо сформировать в виде

При этом для режимов с величинами скоростного напора, принадлежащим нерасчетным значениям q<qmin и q>qmax, величина λ ограничивается соответствующими значениями, т.е.

Из уравнений (9) получаются алгоритмы адаптации:

Как указано выше, выводы (4)…(13) сделаны для первого приближения в описаниях уравнений движения летательного аппарата. Более точные соотношения дают следующие законы адаптации для всех трех каналов управления и стабилизации:

где Н - высота полета, m - текущее значение массы летательного аппарата.

Формульные зависимости (14) реализуются в схеме предлагаемого устройства. Величины v, Н, m измеряются датчиками 1…3, величина v2 вычисляется в первом блоке умножения 11, слагаемые знаменателя выражений (14) вычисляются во втором блоке умножения 14 и в первом 12 и втором 13 блоках деления, на вторые входы которых из задатчика опорных сигналов 10 подаются константы В1, В2, В3. Знаменатель вычисляется в сумматоре 15, обратная величина его - в блоке формирования обратной величины сигнала 16, в блоке масштабирования 17 вычисляются величины iв, iн, iэ, ρв, ρн, ρэ путем умножения величины, обратной знаменателю, на постоянные масштабные величины А1 в,н,э, А2 в,н,э.

В цифровом блоке умножения 25 происходит перемножение цифровых величин позиционных сигналов управления, полученных в первом 22, втором 23 и третьем 24 блоках сравнения на передаточные числа iв, iн, iэ. В цифроаналоговом преобразователе 26 полученные величины переводятся в аналоговые сигналы и поступают на входы первого 7, второго 8 и третьего 9 суммирующих усилителей, на вторые входы которых подаются аналоговые сигналы, являющиеся результатами перемножения в цифроаналоговом блоке умножения 18 цифровых величин ρв, ρн, ρэ на аналоговые сигналы угловых скоростей ωx, ωy, ωz с выхода блока демпфирующих гироскопов 4.

Наиболее точно достаточно сложные законы адаптации на основе соотношений (14) могут быть реализованы при наличии на борту летательного аппарата цифровой вычислительной системы. Все блоки устройства управления являются общеизвестными и могут быть реализованы на элементах автоматики и вычислительной техники, например, по [5, стр.103; 6, стр.55].

Таким образом, предложенная бортовая цифроаналоговая адаптивная система управления летательным аппаратом позволяет расширить функциональные возможности управления летательным аппаратом и обеспечить требуемые запасы устойчивости контура стабилизации и требуемое качество переходных процессов за счет адаптации передаточных чисел каналов управления к условиям полета.

Источники информации

1. Система управления угловым движением беспилотного летательного аппарата. Патент РФ № 2234117, кл. G05D 1/08, 2003 г.

2. Устройство формирования управляющих сигналов для системы управления летательным аппаратом. Патент РФ № 2238582, кл. G05D 1/08, 2003 г.

3. Аэродинамика, устойчивость и управляемость сверхзвуковых самолетов. Под ред. Г.С.Бюшгенса. М.: Наука, Физматлит, 1998.

4. В.А.Боднер. Теория автоматического управления полетом. М.: Наука, 1964. С.178.

5. А.У.Ялышев, О.И.Разоренов. Многофункциональные аналоговые регулирующие устройства автоматики. М.: Машиностроение, 1981.

6. В.Б.Смолов. Функциональные преобразователи информации. Л.: Энергоиздат, Ленинградское отделение, 1981.

Бортовая цифроаналоговая адаптивная система управления летательным аппаратом, содержащая последовательно соединенные задатчик угла тангажа и первый блок сравнения, второй блок сравнения, последовательно соединенные задатчик угла крена и третий блок сравнения, а также блок свободных гироскопов, блок демпфирующих гироскопов, исполнительное устройство и первый, второй и третий суммирующие усилители, выходы которых соединены с первым, вторым и третьим входами исполнительного устройства соответственно, причем вторые входы первого, второго и третьего блоков сравнения соединены, соответственно, с первым, вторым и третьим выходами блока свободных гироскопов, отличающаяся тем, что она содержит последовательно соединенные датчик скорости полета, первый блок умножения, второй вход которого также соединен с выходом датчика скорости полета, второй блок умножения, сумматор, блок формирования обратной величины сигнала и блок масштабирования, последовательно соединенные датчик высоты полета и первый блок деления, выход которого подключен ко второму входу сумматора, последовательно соединенные датчик текущего значения массы и второй блок деления, выход которого подключен к третьему входу сумматора, задатчик опорных сигналов, первый, второй и третий выходы которого подсоединены, соответственно, ко второму входу второго блока умножения, второму входу первого блока деления и второму входу второго блока деления, задатчик угла курса, подключенный выходом к первому входу второго блока сравнения, цифровой блок умножения, первый, второй и третий входы которого подсоединены, соответственно, к выходам первого, второго и третьего блоков сравнения, четвертый, пятый и шестой входы подключены, соответственно, к первому, второму и третьему выходам блока масштабирования, а первый, второй и третий выходы соединены, соответственно, с первым, вторым и третьим входами цифроаналогового преобразователя, первый, второй и третий выходы которого подсоединены к первым входам, соответственно, первого, второго и третьего суммирующих усилителей, и цифроаналоговый блок умножения, первый, второй и третий входы которого подключены, соответственно, к первому, второму и третьему выходам блока демпфирующих гироскопов, четвертый, пятый и шестой входы соединены, соответственно, с четвертым, пятым и шестым выходами блока масштабирования, а первый, второй и третий выходы соединены со вторыми входами, соответственно, первого, второго и третьего суммирующих усилителей.
Источник поступления информации: Роспатент

Showing 31-40 of 63 items.
20.12.2014
№216.013.11b7

Способ поражения подводных целей

Изобретение относится к способам поражения подводных целей. Способ поражения подводных целей заключается в доставке отделяемой боевой части подводного действия к району расположения цели, отделении боевой части на конечном участке траектории полета и ее задействовании после приводнения....
Тип: Изобретение
Номер охранного документа: 0002535958
Дата охранного документа: 20.12.2014
20.02.2015
№216.013.28c8

Генератор непрерывных случайных сигналов произвольной длины

Изобретение относится к области создания устройств для генерирования широкополосных случайных стационарных процессов с заданными собственными и взаимными спектральными плотностями мощности. Технический результат заключается в повышении быстродействия работы устройства с быстрой петлей...
Тип: Изобретение
Номер охранного документа: 0002541897
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.28cf

Способ цифровой генерации непрерывного случайного процесса произвольной длины

Изобретение относится к способам создания широкополосных случайных сигналов с заданными собственными спектральными плотностями мощности при испытаниях аппаратуры на вибростойкость к воздействиям случайной вибрации. Техническим результатом является повышение быстродействия преобразования с...
Тип: Изобретение
Номер охранного документа: 0002541904
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3af3

Способ формирования коррелированных случайных сигналов

Изобретение относится к способам создания широкополосных случайных процессов с заданными собственными и взаимными спектральными плотностями мощности и может быть использовано в приборостроении, машиностроении, вычислительной технике для создания, в частности, многоканальных автоматических...
Тип: Изобретение
Номер охранного документа: 0002546579
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3af4

Генератор коррелированных случайных сигналов

Изобретение относится к области вычислительной техники и может быть использовано для генерирования широкополосных случайных стационарных сигналов с заданными собственными и взаимными спектральными плотностями мощности. Техническим результатом является генерирование двух случайных сигналов с...
Тип: Изобретение
Номер охранного документа: 0002546580
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b9b

Устройство противолодочного вооружения

Изобретение относится к устройствам для поражения подводной цели, а именно к устройству противолодочного вооружения. Устройство противолодочного вооружения содержит крылатую ракету. Крылатая ракета состыкована посредством устройства отделения с разгонным двигателем. Крылатая ракета содержит...
Тип: Изобретение
Номер охранного документа: 0002546747
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.405b

Способ старта летательного аппарата (варианты)

Изобретение относится к реактивной технике и может быть использовано при старте летательных аппаратов (ЛА). Размещают ЛА в пусковой установке (ПУ), или транспортно-пусковом стакане ПУ, или частично в ТПС ПУ с внешним расположением реактивных сопел, или транспортно-пусковом контейнере (ТПК), или...
Тип: Изобретение
Номер охранного документа: 0002547963
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.405c

Летательный аппарат (варианты)

Группа изобретений относится к устройствам для пуска летательных аппаратов (ЛА). ЛА содержит корпус с силовой обшивкой, силовые рамы, прикрепленные к обшивке, и агрегаты, закрепленные на силовых рамах, включая стартовую двигательную установку с реактивным соплом, прикрепленную к корпусу...
Тип: Изобретение
Номер охранного документа: 0002547964
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5be8

Пиротолкатель заглушки воздухозаборного устройства воздушно-реактивного устройства

Изобретение относится к авиационной технике, а именно к конструктивным элементам двигателей летательных аппаратов. Пиротолкатель заглушки воздухозаборного устройства воздушно-реактивного двигателя состоит из корпуса, газогенератора с дроссельной шайбой, сбрасываемого с заглушкой поршня,...
Тип: Изобретение
Номер охранного документа: 0002555069
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5bf8

Летательный аппарат

Изобретение относится к летательным аппаратам. Летательный аппарат содержит корпус, двигательную установку, включающую закрепленные вокруг корпуса в продольном направлении реактивные сопла, и интерцепторы, каждый из которых установлен на периферии соответствующего реактивного сопла за его...
Тип: Изобретение
Номер охранного документа: 0002555085
Дата охранного документа: 10.07.2015
Showing 31-40 of 82 items.
26.08.2017
№217.015.d640

Радиоэлектронный блок

Изобретение относится к радиоэлектронной технике, а именно к конструкции блоков пакетного типа, содержащих печатные платы и разъемные электрические соединения, и может быть использовано в вычислительных и им подобных блоках. Технический результат - обеспечение возможности сохранения,...
Тип: Изобретение
Номер охранного документа: 0002622769
Дата охранного документа: 20.06.2017
26.08.2017
№217.015.dd6d

Устройство отвода тепла

Изобретение относится к области радиоэлектроники и предназначено для отвода тепла от теплонагруженных элементов электронной радиоаппаратуры в герметичных и негерметичных отсеках на борту летательных аппаратов, работающих в жестких климатических условиях, и в условиях воздействия вибрационных и...
Тип: Изобретение
Номер охранного документа: 0002624422
Дата охранного документа: 03.07.2017
19.01.2018
№218.016.08a8

Способ формирования сигнала управления боковым движением нестационарного беспилотного летательного аппарата с адаптивно-функциональной коррекцией и устройство для его осуществления

Группа изобретений относится к способу и устройству формирования сигнала управления боковым движением нестационарного беспилотного летательного аппарата с адаптивно-функциональной коррекцией. Для формирования сигнала управления задают угол курса, измеряют сигнал угла курса, формируют сигнал...
Тип: Изобретение
Номер охранного документа: 0002631736
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.08d3

Способ формирования многофункционального сигнала стабилизации углового положения летательного аппарата и устройство для его осуществления

Группа изобретений относится к способу и устройству для формирования многофункционального сигнала стабилизации углового положения летательного аппарата (ЛА). Для формирования сигнала стабилизации задают сигнал углового отклонения положения ЛА, измеряют сигналы углового положения и угловой...
Тип: Изобретение
Номер охранного документа: 0002631718
Дата охранного документа: 26.09.2017
10.05.2018
№218.016.3b94

Адаптивная система с эталонной моделью для управления летательным аппаратом

Адаптивная система с эталонной моделью для управления летательным аппаратом, содержащая два сумматора, три блока умножения, три интегратора, корректирующее звено, блок сравнения, блок алгоритмов самонастройки, эталонную модель, датчики угла поворота, угловой скорости и линейного ускорения,...
Тип: Изобретение
Номер охранного документа: 0002647405
Дата охранного документа: 15.03.2018
18.05.2018
№218.016.5198

Способ формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления и устройство для его осуществления

Группа изобретений относится к способу и устройству формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления. Для формирования сигнала угловой стабилизации задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют его...
Тип: Изобретение
Номер охранного документа: 0002653409
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.56fc

Способ определения неисправностей гироскопического измерителя вектора угловой скорости космического аппарата и устройство для его реализации

Изобретение относится к области бортового приборостроения и может найти применение для определения неисправностей гироскопического измерителя вектора угловой скорости (ГИВУС) космического аппарата. Технический результат – расширение функциональных возможностей на основе повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002655008
Дата охранного документа: 23.05.2018
16.02.2019
№219.016.bbba

Способ формирования интегрального сигнала управления для систем автоматического регулирования и устройство для его осуществления

Изобретение относится к системам автоматического управления или регулирования линейных или угловых скоростей и может быть использовано в системах автоматического регулирования различных объектов. Достигаемый технический результат - повышение динамической точности и быстродействия устройства....
Тип: Изобретение
Номер охранного документа: 0002403608
Дата охранного документа: 10.11.2010
20.02.2019
№219.016.bc73

Аппарат для восстановления функции суставов механотерапией

Изобретение относится к области медицины. Аппарат содержит неподвижную и подвижную платформы для закрепления устройств, фиксирующих сегменты конечностей. Платформы связаны между собой шарнирно. Шарниры выполнены шаровыми. Ось вращения подвижной платформы относительно неподвижной образует с...
Тип: Изобретение
Номер охранного документа: 0002277894
Дата охранного документа: 20.06.2006
20.02.2019
№219.016.c1f7

Способ ориентации в пространстве осей связанной системы координат космического аппарата

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ заключается в том, что оси связанной системы координат КА (X, Y, Z) совмещают с осями солнечно-орбитальной системы координат (Х, Y, Z). При этом ось Y направлена на Солнце, а совмещаемая с ней...
Тип: Изобретение
Номер охранного документа: 0002428361
Дата охранного документа: 10.09.2011
+ добавить свой РИД