×
19.04.2019
219.017.1d96

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу автоматического группового целераспределения истребителей с учетом возможного выбывания участников, который заключается в том, что для каждого перехватчика формируют функционал эффективности перехвата, путем решения множества численных уравнений получают оптимальное назначение целей перехватчикам вместе с траекториями перехвата, формируют сигналы управления перехватчиками, обеспечивающие их наведение на выбранные цели. Обеспечивается автоматическое оптимальное назначение целей перехватчикам с возможностью перераспределения целей при выбывании участников. 3 ил.

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА.

Анализ особенностей ведения боевых действий в рамках стратегии бесконтактных сетецентрических войн [1] свидетельствует о том, что основным видом воздушно-космического противоборства является групповое применение как средств нападения, так и защиты. В связи с этим оценка возможностей группы ЛА по решению задач группового боестолкновения является весьма актуальной.

В аналогах [2,3] предлагаемого изобретения в основном рассматривается выбор целей, наилучших для перехвата, исходя из решения очень сложной задачи нелинейного целочисленного программирования на основе расчета вероятностей поражения отдельных целей отдельными объектами. Способ назначения различных i-x типов оружия на j-е цели , изложенный в [2], основан на задании вероятностей поражения каждой цели каждым типом оружия. Для всякого возможного назначения типов оружия на цели определяют вероятность их выживания. Выбирают такое назначение xij, которое минимизирует ожидаемую суммарную опасность

непораженных целей, где

Vj - коэффициент опасности j - й цели,

qij - вероятность выживания j-й цели при использовании i - го типа оружия,

xij - количество экземпляров i-ro типа оружия, назначенных на j - ю

цель.

С математической точки зрения такая задача представляет собой сложную задачу нелинейного целочисленного программирования. Нахождение ее точного решения практически невозможно уже при рассмотрении двух десятков объектов [2].

При целераспределении по маневрирующим целям необходимо знать время жизни гипотез изменения скорости цели (обычно несколько секунд). По истечении этого интервала необходимо снова решить задачу целераспределения и сформулировать сопутствующий закон управления. Также со временем некоторые цели и истребители могут выбывать из процесса перехвата. При этом назначение целей может измениться.

Целью предлагаемого изобретения является разработка более простого способа целераспределения в групповом противоборстве, эффективность которого определяется не вероятностью поражения цели, а выполнением реальных ограничений на перехват в процессе полета на выбранную для поражения цель.

В качестве прототипа был выбран способ целераспределения, изложенный в работе [4], в котором не учитывается возможное выбывание участников. Кроме того, в отличие от прототипа, в предлагаемом изобретении обеспечивается назначение целей всем перехватчикам, даже если их количество превышает количество целей.

Специфика решаемой задачи предопределяет необходимость учета как временных, так и энергетических затрат на выполнение перехвата.

Предлагаемый в прототипе подход к формированию предполагаемой траектории перехвата, учитывающий эти требования, основан на использовании функционала

временных и энергетических затрат на перехват для каждой пары перехватчика с номером n и цели с номером m , где

Т - полное время полета перехватчика по траектории,

К - постоянный коэффициент, выбираемый из соображений баланса между временем перехвата и затратами на полет с ускорением,

J - вектор ускорения перехватчика,

t - время действия ускорения перехватчика.

В (2) второе слагаемое учитывает затраты на формирование управляющего сигнала перехватчика.

По минимуму этого функционала, найденному среди определенного класса траекторий, строится матрица эффективности перехвата, процедура построения которой приведена ниже. На основе полученной матрицы при помощи известного алгоритма находится оптимальное распределение, обеспечивающее минимум суммарного функционала качества

среди всех возможных назначений m(n) целей перехватчикам.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в возможности автоматического оптимального назначения целей перехватчикам с перераспределением целей при выбывании участников, что снижает информационную нагрузку на операторов (штурманов наведения).

Заявленный технический результат, который может быть получен от реализации предлагаемого технического решения, достигается тем, что решается задача поиска оптимального значения суммарного функционала качества, основанного на временных и энергетических затратах с учетом реальных ограничений на возможности перехватчиков.

Возможность достижения технического результата обусловлена следующими причинами:

- индивидуальный функционал эффективности перехвата (2) для каждой пары перехватчик-цель основывается на рассмотрении временных и энергетических затрат с учетом реальных ограничений на возможности перехватчиков;

- задача поиска минимального значения функционала (2) сводится к задаче поиска корней многочлена, способ решения которой известен [5];

- задача поиска минимума суммарного функционала эффективности перехвата (3) сводится к решению задачи о назначениях [6], которая эффективно решается венгерским алгоритмом [6].

Сущность предлагаемого изобретения заключается в разработке принципиально нового способа автоматического назначения группы целей группе перехватчиков, при котором заранее выбранный функционал качества (2), учитывающий как временные, так и энергетические затраты на выполнение перехвата, периодически и при необходимости коррекции целераспределения вычисляют для каждой пары перехватчик-цель, затем ищут его минимум среди заданного класса траекторий с учетом заданных ограничений на скорости и ускорения перехватчиков, после чего целераспределение определяется решением задачи о назначениях [6].

В решаемой задаче для группы, состоящей из N произвольно расположенных перехватчиков и М целей, необходимо назначить каждому n-му перехватчику m - ю цель, наилучшую по минимуму суммарного функционала эффективности перехвата (3), в котором In,m представляет собой функционал, соответствующий траектории перехвата n-м перехватчиком m - й цели. Минимизация функционала (3) производится по всем возможным назначениям m(n) n-го перехватчика на m - ю цель. В случае если перехватчиков больше чем целей, некоторым целям будут назначены более одного перехватчика, в противоположном случае каждому перехватчику назначается единственная цель.

Задача будет решаться при условии, что выполняются следующие допущения:

- цели и перехватчики расположены в пространстве произвольно, имеют различные начальные скорости и направления полета;

- цели являются равнозначными;

- цели не маневрируют и летят с постоянными скоростями;

- все перехватчики обладают достаточным запасом топлива;

- траектория каждого перехватчика состоит из двух участков: на первом выполняется доворот на цель до требуемого угла упреждения с постоянным ускорением, а на втором -прямолинейный полет в упрежденную точку встречи;

- заданы максимально допустимые значения скоростей и ускорений перехватчиков;

- в процессе наведения возможно выбывание как целей, так и перехватчиков.

Реализация предлагаемого способа состоит из следующих этапов.

1. На первом этапе проверяют необходимость коррекции целераспределения.

2. На втором этапе выбирают класс траекторий, с помощью которых перехватчики должны перехватывать цели. На основе этого вычисляют индивидуальный функционал качества (2) перехвата для каждой пары «перехватчик-цель» с учетом заданных максимально допустимых значений скоростей и ускорений перехватчиков.

3. На третьем этапе решение задачи поиска минимума индивидуального функционала качества (2) сводят к решению нескольких задач минимизации с ограничениями типа равенств.

4. На четвертом этапе производят назначение целей перехватчикам, обеспечивающее минимум суммарного функционала (3).

Первый этап заключается в анализе необходимости коррекции целераспределения, проводимом периодически, а также при изменении состава перехватчиков или целей.

Второй этап проиллюстрирован фигурой 1. Выберем определенный перехватчик и определенную цель. В начальный момент перехватчик находится в точке А и летит со скоростью V0, а цель находится в точке В и летит со скоростью V. Предполагаемую траекторию перехвата, состоящую из двух участков, строят следующим образом: на первом участке перехватчик летит с постоянным ускорением J, выполняя доворот на цель, до момента t, когда перехватчик находится в точке С, а цель - в точке D, затем на втором участке перехватчик летит с постоянной скоростью до момента Т.

Условие перехвата в случае, когда перехватчик и цель летят с постоянными скоростями, заключается в том, что относительная скорость полета перехватчика направлена по линии визирования цели. Это означает, что в момент t окончания действия ускорения относительная скорость полета должна быть направлена по вектору (фиг. 1). Тогда перехватчик и цель встретятся в точке Е. Если обозначить в момент t относительное положение цели и относительную скорость перехватчика Vt, то из условия перехвата следует, что для некоторого τ≥0 выполнено rt=τVt. Здесь τ является интервалом времени между моментом окончания действия ускорения и моментом перехвата. Обозначив положение цели относительно перехватчика в начальный момент времени , после выражения rt, Vt через начальные величины получим:

Преобразовав (4), получим

(2τ+t)Jt=2r0+2(τ+t)(V-V0).

Сумма t+τ представляет собой полное время полета Т. Тогда

Согласно принятым допущениям, скорость перехватчика Vt=V0+Jt в момент окончания действия ускорения не может превышать Vmax, а его ускорение - Jmax. Из (5) следует, что ограничение определяет неравенство

а ограничение |Vt|≤Vmax - неравенство

при

Определив Jt из (5) и подставив в (2), получим функцию двух переменных Im,n(T,t), которую требуется минимизировать при ограничениях (6) - (9).

Допустим, что функционал принимает минимальное значение при некоторых значениях T,t, так что все неравенства (6) -(9) являются строгими. Можно утверждать, что при некоторых значениях J* и t* величина не увеличится, ограничение по скорости будет выполнено и перехват цели произойдет в момент Т*≤Т. В результате значение функционала (2) уменьшится. Поэтому минимальное значение функционала (2)следует искать при условии, что одно или два неравенства из (6) - (9) становятся равенствами.

На третьем этапе последовательно проверяются следующие условия.

1. Если (7) является равенством, то выполняется условие . С его помощью функционал (2) можно представить в виде

После подстановки Jt из (5) получим

После замены переменной Т на z=2T -t функционал принимает вид

а равенство (7) -

Введем обозначения

Тогда после возведения (11) в квадрат получим

а (10) принимает вид

После замены переменных х=1/z; у=t/z поиск минимума (10) сводится к минимизации функционала

при ограничении

Если ввести множитель Лагранжа λ, то необходимым условием минимума будет

.

Обозначим .

После исключения λ и вычисления производных получим уравнение

Избавившись от корня с помощью возведения в квадрат, получим равенство

,

которое после упрощения с помощью (15) принимает вид

Тем самым, задача минимизации (14) сведена к решению системы уравнений (15), (16). Так как коэффициент положителен, заменой х=(2ξ-dy-е) / 2ƒ можно привести (15) к виду ξ21у2+b1y+с1. При этом (16) можно записать в виде:

,

где hk(y) - некоторые многочлены степени k. После возведения в квадрат останутся только четные степени ξ, которые выражаются через y. В результате получится уравнение двенадцатой степени относительно у. Численно найдем все его действительные корни при помощи известных алгоритмов нахождения корней многочленов [5]. Подставим найденные корни в (15) и из полученного квадратного уравнения найдем действительные значения х, если таковые существуют. В результате получим несколько пар значений х,у. Перейдем обратно к переменным T, t и выбросим те значения, которые не удовлетворяют (6), (8) и (9). Оставшиеся пары занесем в общий список кандидатов на минимум функционала (2).

2. Если равенством является (6), т.е. | J |=Jmax, то из него можно выразить t:

где использованы обозначения (12). Знак перед вторым слагаемым выбран исходя из условия t ≤ Т. В функционале (2) положим и подставим в него найденное выражение для t. В результате функционал качества становится функцией Т:

Вычислим производную dIm,n(T) / dT и приравняем ее нулю. Если обозначить

h=16(1+1 / KJmax)21, (T)=(4аТ2+2dT+ƒ) / g,ƒ2(T)=(8aT+2d) / g, то после ряда преобразований условие равенства нулю производной определяется соотношением

((16-h)T2ƒ1(T)+ƒ2(T)2)21(T)(8Tƒ2(T)-hƒ1(T))2=0,

которое после раскрытия скобок приводит к уравнению восьмой степени по переменной Т. Решим его численно. Для каждого полученного Т найдем t из (17). Из всех полученных пар действительных значений (T, t) оставим только те, которые удовлетворяют (7), (8) и (9). Занесем их в общий список кандидатов на минимум функционала (2).

3. Если равенством является (8) (Т=t), т.е. с начала перехвата цели до его окончания реализуется равноускоренный полет перехватчика, то выразим Jt из (5) и подставим его в (2):

Если перейти к z=1 / T, то в обозначениях (12) получим

Уравнение dIm,n(z) / dz=0 сводится к уравнению шестой степени

K2z4(ƒz+d)2=ƒz2+2dz+4a.

Решим его численно и те корни, для которых выполнены (6), (7) и (9), добавим в общий список кандидатов на минимум функционала (2).

4. Если равенством является (9) (t=0), т.е. имеет место полет с постоянной скоростью, то расстояние от перехватчика до цели в момент Т* будет . Оно принимает минимальное значение при = - d/4a в обозначениях (12). Если ≥ 0 и величина промаха rmin находится в допустимых пределах, то добавим пару значений ; t=0 в общий список кандидатов на минимум с соответствующим значением функционала .

5. В случае, когда из четырех неравенств (6)-(9) два являются равенствами, возможны следующие ситуации.

5.1. Пусть равенствами являются выражения (6) и (7), т.е. . Сделаем замену z-2T-t. Тогда после возведения в квадрат в обозначениях (12) равенство (7) примет вид (13), а равенство (6) запишется как

Сложив (18) и (13), получим

.

Можно сократить на z т.к. z -Т+(Т-t)≥T>0:

Выразим отсюда z и подставим в (13). Получится уравнение шестой степени относительно t:

где обозначено

.

Численно найдем все действительные корни t уравнения (20), затем найдем соответствующие значения z из (19) и значения T=(z+t)/2.

Удовлетворяющие неравенствам (8) и (9) значения занесем в общий список кандидатов на минимум функционала (2).

5.2. Пусть равенствами являются (6) и (8). Тогда после подстановки t=T в (6) и возведения в квадрат получится уравнение

.

Его решения, удовлетворяющие неравенствам (7) и (9), добавим в общий список кандидатов на минимум функционала (2).

5.3. Пусть теперь равенствами являются (7) и (8). Подставим t=Т в (7) и возведем в квадрат.В обозначениях (12) получим уравнение

Его решения, удовлетворяющие неравенствам (6) и (9), добавим в общий список кандидатов на минимум функционала (2).

5.4. Вырожденный случай, когда одним из равенств является (9), уже был рассмотрен ранее в п. 4.

Теперь найдем глобальный минимум функционала (2). Для всех пар величин (T, t) из общего списка кандидатов на минимум функционала (2), построенного на предыдущих этапах, вычислим Jt с помощью (5) и подставим полученное значение в (2). Выберем те величины, которые дают минимальное значение. Полученное значение Т вместе с соответствующим значением t, значением функционала Im,n и вектором J определяют наилучшую траекторию перехвата цели и затраты на ее реализацию.

Решив задачу поиска минимума (2) для одиночного перехватчика и цели, перейдем к четвертому этапу. Для каждого перехватчика с номером n и цели с номером m определяют наилучшую траекторию перехвата и соответствующее значение In,m функционала (2).

Затем выполняют итерационную процедуру назначения целей. На шаге с номером k строят матрицу эффективности размера N(k) × М и список пар L(k), содержащий набор пар номеров перехватчиков и назначенных им целей. На первом шаге k=1 полагают N(1)=N и , а L(1) полагают пустым. На шаге с номером k решают «задачу о назначениях» [6] с матрицей стоимости с помощью «венгерского алгоритма» [6], получая тем самым оптимальное с точки зрения минимума суммарных затрат

назначение целей перехватчикам в виде набора пар A(k) перехватчик-цель вместе с соответствующими траекториями перехвата. После этого полагают L(k+1) равным объединению L(k) и полученного набора A(k), N(k+1)=N(k)-М, а матрицу получают из удалением столбцов с номерами перехватчиков из А(k). Если N(k+1)>0, то переходят к k+1 шагу, в противном случае процедуру назначения завершают и формируют итоговый список пар L=L(k+1), содержащий назначение целей для перехватчиков.

Сформированный в итерационной процедуре список назначения L по линиям связи передают в систему командного управления, в которой формируют сигналы управления перехватчиками, обеспечивающие их наведение на выбранные цели.

Следует отметить, что для использования алгоритма необходимы оценки: векторов скорости всех перехватчиков и целей; векторов относительного положения для каждой пары перехватчик - цель; максимальных ограничений на величины скорости и ускорения перехватчиков. Эти данные могут быть представлены в любой форме: в декартовых или полярных координатах, в абсолютных или относительных величинах. Нужно лишь указать способ вычисления коэффициентов (12).

Работоспособность разработанного алгоритма (2) - (21) исследовалась в процессе имитационного моделирования. В качестве примера рассмотрим процедуру перехвата целей перехватчиками .

Схема расположения N=3 перехватчиков и М=2 целей при моделировании целераспределения с выбыванием одного перехватчика показана на фиг. 2. По результатам выполнения алгоритма (2)-(21) на вторую цель были назначены первый и третий перехватчик, а на первую цель - второй перехватчик. В соответствии с указанным назначением цели и перехватчики двигались до момента, когда перехватчики и цели переместились в точки, отмеченные звездочками. В этот момент первый перехватчик выбывает из преследования второй цели. Повторное выполнение алгоритма (2)-(21) определяет назначение первой цели для первого перехватчика и второй цели для третьего перехватчика, после чего происходит полет перехватчиков и целей до перехвата.

Схема расположения N=4 перехватчиков и М=3 целей при моделировании целераспределения с выбыванием одной цели показана на фиг. 3. По результатам выполнения алгоритма (2) - (21) на первую цель был назначен первый перехватчик, на вторую цель были назначены третий и четвертый перехватчики, а на третью цель был назначен второй перехватчик. В момент времени, когда перехватчики и цели переместились в точки, отмеченные звездочками, вторая цель перехвачена четвертым перехватчиком и считается уничтоженной. Повторное выполнение алгоритма (2) - (21) определяет назначение первой цели для первого перехватчика и второго перехватчика, а третья цель назначена для третьего и четвертого перехватчиков.

Полученный способ группового целераспределения подтвердил свою эффективность в широком поле условий применения. Его достоинством является то, что он позволяет обеспечить не только назначение всех перехватчиков на цели, но и построение предполагаемых траекторий перехвата с учетом реальных ограничений на предельно допустимые скорости и ускорения перехватчиков и возможного выбывания участников перехвата.

Предложенный способ можно использовать для реализации различных методов наведения.

Промышленная применимость предлагаемого технического решения подтверждается также возможностью реализации его назначения с помощью стандартных бортовых вычислительных средств.

Следует отметить, что предлагаемый способ следует общей схеме, используемой в отечественных авиационных комплексах радиолокационного дозора и наведения.

Список использованных источников

1. Е.А. Федосов. Реализация сетецентрической технологии ведения боевых действий потребует создания БРЛС нового поколения. // Фазотрон. 2007. №1, 2.

2. R. Ahuja, A. Kumar, J. Krishna, J. Orlin. Exact and heuristic algorithms for the weapon - target assignment problem. // Operations research, 2007, 55, №6, pp. 1136-1146.

3. J. Zhang, С. Нu, X. Wang, D. Yuan. ACGA algorithm of solving weapon - target assignment problem. // Open journal of applied sciences, 2012.

4. В.И. Меркулов, A.C. Пляшечник. Групповое целераспределение в воздушном противоборстве. // Информационно-измерительные и управляющие системы. 2016. №7. С. 59-63.

5. М.А. Jenkins. Algorithm 493: Zeros of a real polynomial. // ACM transactions on mathematical software, 1975, 1, №2, pp. 178-189.

6. J. Munkres. Algorithms for assignment and transportation problems. // Journal of the society for industrial and applied mathematics, 2000, 5, №1, pp. 32-38.


СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
СПОСОБ АВТОМАТИЧЕСКОГО ГРУППОВОГО ЦЕЛЕРАСПРЕДЕЛЕНИЯ ИСТРЕБИТЕЛЕЙ С УЧЕТОМ ВОЗМОЖНОГО ВЫБЫВАНИЯ УЧАСТНИКОВ
Источник поступления информации: Роспатент

Showing 51-60 of 66 items.
01.05.2019
№219.017.4824

Способ оценки эффективности радиоэлектронных средств в условиях действия непреднамеренных помех и система для его реализации

Изобретение относится к измерительной области техники. Способ оценки эффективности радиоэлектронных средств в условиях действия непреднамеренных помех (НП), заключающийся в том, что на основании определения текущего режима работы, например, i-го РЭС, а также его параметров (время работы на...
Тип: Изобретение
Номер охранного документа: 0002686582
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
04.06.2019
№219.017.7342

Способ автоматического группового целераспределения истребителей с учетом приоритета целей

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА. Предлагаемый способ позволяет определить...
Тип: Изобретение
Номер охранного документа: 0002690234
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.83d1

Приемная мультипликативная фар

Изобретение относится к антенной технике и может быть использовано в системах связи и радиолокации. Техническим результатом изобретения является получение высокого коэффициента усиления антенной решетки при низком уровне боковых лепестков (УБЛ) диаграммы направленности (ДН). Приемная...
Тип: Изобретение
Номер охранного документа: 0002691672
Дата охранного документа: 17.06.2019
17.07.2019
№219.017.b52c

Способ сканирования луча гибридной зеркальной антенны

Способ сканирования луча гибридной зеркальной антенны, отличающийся тем, что сканирование луча производят включением группы излучателей, при этом количество излучателей в группе одинаково для всех лучей, а смежные лучи формируются отключением крайнего излучателя группы с одной стороны и...
Тип: Изобретение
Номер охранного документа: 0002694460
Дата охранного документа: 15.07.2019
17.07.2019
№219.017.b536

Устройство для измерения амплитудно-фазовых шумов источников свч радиоимпульсного сигнала с высокой скважностью передатчиков высококогерентных систем локации и связи

Устройство для измерения амплитудно-фазовых (АФ) шумов источников СВЧ радиоимпульсного сигнала с высокой скважностью высококогерентных систем локации и связи относится к измерительной технике и может быть использовано для контроля уровня амплитудно-фазовых (АФ) шумов на различных стадиях...
Тип: Изобретение
Номер охранного документа: 0002694451
Дата охранного документа: 15.07.2019
27.07.2019
№219.017.b9c0

Радиометр влагомер

Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам для техники дистанционного зондирования земной поверхности и экологии. В частности, к СВЧ радиометрии. Радиометр влагомер содержит последовательно соединенные трехвходовый СВЧ-переключатель,...
Тип: Изобретение
Номер охранного документа: 0002695764
Дата охранного документа: 25.07.2019
02.10.2019
№219.017.d130

Способ управления летательным аппаратом

Изобретение относится к способу построения траектории летательного аппарата (ЛА) обхода опасных зон. Для построения траектории по известным координатам начальной и конечной точек пути, направлению скорости ЛА в начальной точке, допустимому радиусу разворота, а также множеству опасных зон...
Тип: Изобретение
Номер охранного документа: 0002700157
Дата охранного документа: 12.09.2019
19.10.2019
№219.017.d82e

Облучатель гибридной зеркальной антенны поляриметрического космического радиолокатора

Использование: для радиолокационного наблюдения объектов на различных поляризациях. Сущность изобретения заключается в том, что облучатель состоит из рупора, решеток волноводных и дипольных излучателей, при этом в его состав введена плоская решетка из тонких проводников, направленных...
Тип: Изобретение
Номер охранного документа: 0002703490
Дата охранного документа: 17.10.2019
22.12.2019
№219.017.f0cd

Способ определения экстраполированных значений дальности и скорости сближения летательного аппарата с радиолокационным объектом

Изобретение относится к радиолокационным системам и заключается в том, что по принятым от радиолокационного объекта (РЛО) радиосигналам оценивают значения расстояния от летательного аппарата (ЛА) - носителя РЛС до РЛО. Достигаемый технический результат – возможность определения...
Тип: Изобретение
Номер охранного документа: 0002709785
Дата охранного документа: 20.12.2019
Showing 51-60 of 72 items.
10.04.2019
№219.017.0054

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях (РЛС) заключается в том, что излучают линейно-частотно-модулированное(ЛЧМ) радиоимпульсы с крутизной, обеспечивающей однозначное измерение дальности до любого летательного аппарата (ЛА), находящегося в пределах...
Тип: Изобретение
Номер охранного документа: 0002296346
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.0055

Способ обнаружения и анализа радиосигналов

Способ обнаружения и анализа радиосигналов заключается в том, что задают: первый порог, определяемый уровнем шума приемного устройства, третий порог, определяемый мощностью помеховых сигналов, четвертый порог, определяемый величиной эффективной площади отражения (ЭПО) обнаруживаемых объектов, а...
Тип: Изобретение
Номер охранного документа: 0002296349
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.02ed

Радиолокационная система для обнаружения проводов линий электропередач

Изобретение относится к радиолокации и может быть использовано на летательных аппаратах при совершении ими маловысотных полетов. Предлагаемая радиолокационная система для обнаружения проводов линий электропередач за счет использования специального вычислителя, оптимизированного на решение...
Тип: Изобретение
Номер охранного документа: 0002310885
Дата охранного документа: 20.11.2007
29.04.2019
№219.017.3f37

Следящий измеритель с обнаружителем маневра и адаптивной коррекцией прогноза

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов, а именно: дальность - скорость, скорость - ускорение, угловая координата - скорость изменения угловой координаты. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002296348
Дата охранного документа: 27.03.2007
29.04.2019
№219.017.410a

Многоканальный радиотермограф

Изобретение относится к области радиотехники и может быть использовано для измерения радиотеплового излучения тел, в частности в медицине, для измерения температурного поля внутренних тканей человека. Многоканальный радиотермограф содержит N антенн, соединенных с N СВЧ-выключателями,...
Тип: Изобретение
Номер охранного документа: 0002310876
Дата охранного документа: 20.11.2007
29.04.2019
№219.017.44d1

Способ скрытного самонаведения самолетов на воздушные объекты

Изобретение относится к области приборостроения и может быть использовано в системах самонаведения летательных аппаратов. Технический результат - расширение функциональных возможностей. Для достижения данного результата траектория наводимого летательного аппарата все время находится в секторе...
Тип: Изобретение
Номер охранного документа: 0002408845
Дата охранного документа: 10.01.2011
01.05.2019
№219.017.47fe

Способ двухэтапного ранжирования воздушных целей по степени опасности в радиолокационных информационно-управляющих системах

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем. Достигаемый технический результат: повышение достоверности ранжирования воздушных целей при решении задач многоцелевого...
Тип: Изобретение
Номер охранного документа: 0002686482
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4eb3

Способ распознавания надводных кораблей на взволнованной морской поверхности

Способ распознавания надводных кораблей основан на сопоставлении информативных признаков наблюдаемых кораблей, полученных по их радиолокационным изображениям с эталонными признаками, соответствующими определенным классам надводных кораблей. Сущность способа заключается в том, что формирование...
Тип: Изобретение
Номер охранного документа: 0002423722
Дата охранного документа: 10.07.2011
29.05.2019
№219.017.6596

Способ обнаружения и определения координат искомого объекта

Изобретение относится к способам радиолокационного обнаружения на местности малоразмерных объектов. Достигаемый технический результат - повышение оперативности и точности определения геодезических координат малоразмерных объектов. Сущность изобретения состоит в том, что в способе лоцирования,...
Тип: Изобретение
Номер охранного документа: 0002392635
Дата охранного документа: 20.06.2010
+ добавить свой РИД