×
10.04.2019
219.017.086c

Результат интеллектуальной деятельности: СОСТАВ СТЕКЛА И СПОСОБ ИЗГОТОВЛЕНИЯ ПРОППАНТОВ ИЗ НЕГО

Вид РИД

Изобретение

№ охранного документа
0002433966
Дата охранного документа
20.11.2011
Аннотация: Изобретение относится к стеклянным сферам, используемым в качестве проппантов для расклинивания нефтяных и газовых скважин. Технический результат изобретения заключается в повышении прочности проппантов и проницаемости при высоких давлениях в глубоких скважинах. Получают расплав стекломассы. Состав стекла для изготовления проппанта следующий, мас.%: SiO - 45-57; MgO - 26-36; AlO - 3-6; (FeO+FeO) - 5-11; CaO - 3-8; другие - менее 5. Расплав стекломассы диспергируют струей воды давлением 200-1000 атм. Соотношение расхода воды к расходу расплава стекла составляет от 0,8 до 4,0. В результате диспергирования струей образуются стеклокристаллизационные сферы. 2 н. и 3 з.п. ф-лы, 2 табл.

Изобретение относится к составу стекла, а также к способам изготовления из него стеклянных сфер, используемых в качестве проппантов для расклинивания нефтяных и газовых скважин.

Известен состав стекла для ситалла, содержащий, вес.% SiO2, - 67,1; Al2O3 - 12,5; MgO - 5,6; Li2O - 9,9; K2O - 3,3; F - 2,7; B2O3 - 1,0 (см патент FR №1159785, 1958 г.).

Наиболее близким по технической сущности является стекло для ситалла, включающее SiO2 - 25-60; B2O3 - 3-15; MgO - 4-25; Al2O3 - 5-25; F - 4-20, R2O, где в качестве R2O содержит, по крайней мере, один окисел из группы K2O - 2-15; Na2O - 2-15; Li2O - 2-7; Rb2O - 2-20; Cs2O - 2-20 (см описание к патенту SU №631065 от 09.08.1971 г.).

Однако известные составы стекла для ситаллов не могут быть использованы для изготовления проппантов, так как основную задачу, которую решают эти составы, направлены на улучшение диэлектрических свойств и механической обрабатываемости. Согласно международному стандарту ISO 13053, основными же показателями качества проппантов являются сопротивление раздавливанию, сферичность и округлость, в значительной степени определяющие проницаемость слоя проппантов в скважине.

Большее распространение по экономическим соображениям получили проппанты из природного окатанного кварцевого песка. Однако сферичность и округлость окатанного песка, как правило, не превышает величину 0,7 по ISO 13053, а его использование ограничено неглубокими скважинами вследствие низкого сопротивления раздавливанию. Для повышения проницаемости природный песок покрывают пленкой фенолформальдегидной смолы, что существенно увеличивает их стоимость, но незначительно увеличивает проницаемость.

Известны проппанты, представляющие собой стеклянные сферы (см. патент US №3497008), которые имеют высокие сферичность и округлость, гладкую поверхность, однако низкую механическую прочность. Кроме того, стеклянные проппанты имеют низкую стойкость в глинокислоте (смесь соляной и плавиковой кислоты), поэтому их использование в скважинах, подвергаемых кислотной обработке, не возможно.

Наиболее близким по технической сущности к заявляемому способу изготовления проппанта является способ изготовления проппанта из стеклянных сфер (см. патент GB №1089213 от 01.11.1967 г.), включающий получение в роторной печи расплава оксидов, в том числе в виде порошка стекла с формированием стеклянных сфер, их охлаждением воздухом до температуры 480-675°C и подачу их в охлаждающую жидкость - раствор крахмала, гликоли. При этом полученные сферы имеют прочность более 700 кг/см2, плотность - менее 2,6 г/см3, сферичность - 0,84, стойкость при температуре 1200°C и рН 3-11.

К недостаткам стеклокристаллических проппантов следует отнести их недостаточно высокую прочность, а следовательно, проницаемость при высоких давлениях, т.е. при гидроразрыве в глубоких скважинах. Это связано с тем, что в известном изобретении рассмотрен только способ производства проппантов и не рассмотрен конкретный состав стекла, направленный на повышение этих показателей.

Технической задачей, на решение которой направлено заявляемое изобретение, является увеличение выхода товарных фракций проппантов, повышение их прочности и проницаемости при высоких давлениях в глубоких скважинах.

Указанный результат достигается тем, что в известном составе стекла для изготовления проппанта, включающем SiO2, MgO, Al2O3, он содержит FeO+Fe2O3, CaO при следующем соотношении компонентов, мас.%:

SiO2 - 45-57

MgO - 26-36

Al2O3 - 3-6

(FeO+Fe2O3) - 5-11

CaO - 3-8

Другие - менее 5

Способ изготовления проппанта из указанного выше состава стекла, включающий получение расплава оксидов с диспергированием его струей воды, для формирования стеклокристаллизационных сфер, их отжиг и охлаждение, плавку стекла осуществляют при температуре 1500-170°C, а последующее диспергирование струи расплава осуществляют струей воды давлением 200-1000 атм, причем соотношение расхода воды к расходу расплава стекла составляет от 0,8 до 4,0. Диаметр струи расплава для диспергирования выбирают в пределах 5-50 мм. Диспергирование струи расплава осуществляют при температуре 1300-1700°C, а кристаллизационный отжиг - при температуре 1100-1270°C.

Диспергирование струи расплава стекла струей воды в отличие от диспергирования воздухом или паром имеет две особенности:

1. Вода - несжимаемое вещество, поэтому струе расплава передается кинетическая энергия воды, что вызывает быстрое и качественное диспергирование.

2. Струя воды, выходящая из сопла под большим давлением, сохраняет сплошность на расстоянии свыше 1 м, что облегчает аппаратурное оформление процесса диспергирования.

Диспергирование струей воды накладывает определенные ограничения и на состав диспергируемого расплава стекла и его температуру:

- необходимо использовать слабощелочной расплав;

- расплав с низкой вязкостью и большим поверхностным натяжением.

Кроме того, диспергирование струи расплава струей воды позволяет передать расплаву значительно большую кинетическую энергию, что увеличивает выход товарных фракций стеклошариков (0,2-0,8 мм) до 80-90% (при диспергировании воздухом - 20-30%, паром - 25-40%, струей раскаленных газов - 30-50%).

Несомненное преимущество диспергирование водой перед диспергированием вращающимся диском как с точки зрения технической простоты процесса, экономичности, производительности, техники безопасности, так и качества получаемой продукции за счет резкого охлаждения стеклошариков - возникновения сжимающих напряжений в поверхностных слоях стеклошариков (закаленное стекло).

Количество подаваемой на струю расплава воды и ее давление определяют как выход годной продукции, так и средний размер стеклошариков. При расходе воды менее 0,8 кг на 1 кг расплава даже при давлении воды 600-1000 атм не удается полностью разбить струю и появляются несферические частицы, а при расходе воды свыше 4 кг на 1 кг расплава средний размер стеклошариков остается постоянным. Давление воды играет существенную роль в технологии диспергирования. При давлении менее 200 атм струя воды быстро теряет свою энергию и удар по струе расплава приводит к образованию крупных стеклошариков, несферических частиц стекла и ваты.

Давление воды свыше 1000 атм авторы не использовали в связи с дороговизной и дефицитностью оборудования. Кроме того, разница в давлении воды между 500 и 1000 атм была незначительной как по среднему значению размера стеклошариков, так и доля годной продукции.

Размер струи расплава стекла также имеет существенное значение: при толщине струи менее 5 мм происходит быстрое ее охлаждение, а при толщине более 50 мм - разброс в тангенциальном (поперечном) направлении. В том и другом случаях возрастает доля несферических частиц.

Соотношение оксидов кремния, магния, алюминия, кальция и железа определены опытным путем. Такой состав обладает оптимальным соотношением технологических и качественных показателей. Другие оксиды, содержание которых не должно превышать 5 мас.%, обычно представлены оксидами хрома, марганца, никеля, бора, серы, калия, натрия, титана, фтора и их влияние на прочность проппантов ограничено. Эти оксиды являются примесями в исходном сырье.

Суммарное содержание оксидов кремния и алюминия не должно превышать 60%, так как вязкость расплава при их содержании свыше 60% даже при температуре 1700°C становится высокой и при диспергировании струей воды образуется много ваты и иголок.

Пример 1

Материал расчетного состава, в мас.% SiO2 - 52, MgO - 32, CaO - 5, Al2O3 - 6,

(FeO+Fe2O3) - 5 (примеси: Cr2O3, TiO2, K2O, Na2O, F, S, P2O5, B2O3 и др., присутствующие в природном сырье в количестве до 5%, из расчета исключены), расплавляли в дуговой рудно-термической печи и сливали через огнеупорную воронку с расходом примерно 1200 кг/час при температуре струи расплава примерно 1550°C+20°C. Диспергирование струи расплава осуществляли плоской водяной струей давлением от 50 до 1000 атм и расходом воды от 600 до 10000 л/час. В качестве параметра оптимизации принимали содержание стеклошариков размером менее 0,8 мм. В таблице 1 приведены результаты проведенных экспериментов.

Таблица 1
Влияние давления и расхода воды на диспергирование струи расплава стекла
№ п/п Давление воды на выходе из сопла (атм) Расход воды (л/час) Содержание стеклосфер размером менее 0.8 мм (%)
1 50 600 23
2 50 1000 31
3 50 4000 38
4 100 600 36
5 100 5000 47
6 100 8000 51
7 200 600 58
8 200 1000 73
9 250 1000 80
10 250 5000 86
11 500 600 65
12 500 1000 87
13 500 2000 91
14 500 5000 94
15 500 10000 95
16 1000 5000 95
17 1000 10000 96

Из таблицы 1 можно сделать вывод, что при диспергировании струи расплава струей воды оптимальным является давление воды 200-1000 атм, а расход воды от 0,8 до 4 по отношению к расходу расплава стекла.

Пример 2

Расплавы различного состава диспергировали плоской струей воды. Расход воды брали - 4000 л/час, давление воды - 400 атм, расход расплава стекла - 1200 кг/час. В качестве параметров оптимизации принимали следующие: прочность стеклошариков - проппантов фракции 40/70 (0,42-0,21 мм); количество несферических частиц (ваты, иголок).

В таблице 2 приведены результаты проведенных экспериментов. Состав пересчитан на оксиды кремния, магния, кальция, алюминия и железа, без учета примесей (Cr2O3, TiO2, K2O, Na2O, F, S, P2O5, B2O3 и др.).

Таблица 2
Результаты проведенных экспериментов
Номер п/п Расчетный химический состав стекла, мас.% Прочность на раздавливание фракции 40/70 по ГОСТ при 680 атм Доля несферических частиц (вата и иголки)
SiO2 MgO СаО Al2O3 FeO+Fe2O3
1 40 40 5 8 7 8,4 5
2 45 35 5 8 7 2,3 3
3 50 30 5 8 7 2 7
4 55 25 5 8 7 7,4 12
5 60 20 5 8 7 9,0 30
6 50 26 8 5 11 3,1 2
7 50 40 2 2 6
8 50 30 10 4 6 7,9 5
9 50 35 10 2 3 11,0 4
10 55 20 10 6 9 12,3 8
11 55 30 5 5 5 1,8 6
12 55 37 2 4 2 6,9 12
13 55 25 10,0 5 5 10,4 5
14 52 29 6 5 8 1,3 3
15 57 21 4 6 12 14,8 8
16 60 20 10 5 5 11,6 19
17 65 20 5 5 5 12,9 45
18 52 38 2 2 6 6,8 12
19 52 32 5 6 5 0,4 2
20 52 20 0 3 15 8,4 5
21 52 31 8 3 6 0,8 5

Таким образом, стеклосферы заявляемого состава имеют наиболее высокую прочность на раздавливание (меньшее количество разрушенных гранул, см. примеры - 6, 11, 14, 19, 21) и могут быть рекомендованы для использования в качестве проппантов.

Стекло заявляемого состава имеет чрезвычайно высокую склонность к кристаллизации, а при диспергировании струи расплава воздухом или струей горячих газов (например, продуктами сгорания природного газа или керосина) происходит более медленное охлаждение, что приводит к неконтролируемой кристаллизации стекла и снижению прочности стеклошариков размером крупнее 0,2 мм.

Следует отметить, что кристаллизационный обжиг стеклошариков является эффективным только в области температур 1100-1270°C в течение времени не более 10-15 минут для образования 20-40% по объему стекла мелких (менее 2 мкм) кристаллов форстерита и пироксена. При более длительных выдержках увеличение доли кристаллической фазы вызывает деформацию стеклошариков вследствие того, что кристаллическая фаза имеет большую плотность.

При температуре ниже 1100°C термические напряжения при кристаллизации вызывают трещинообразование в стекле и снижение прочности, в интервале 1100-1270°C напряжения релаксируются за счет пластической деформации высоковязкого стекла, а выше 1270°C происходит слипание стеклошариков вследствие снижения вязкости.

Следует отметить, что существенное увеличение прочности стеклошариков заявляемого состава и изготовленных согласно настоящему изобретению по сравнению с имеющимися на рынке стеклошариками позволило улучшить качество не только проппантов, но стеклошариков для струйной обработки поверхности металлов и стекла, а также для ряда других специфических областей применения (наполнители пластмасс, бетонов, светоотражающие поверхности).

Проведенные промышленные испытания на предприятии ООО «ФОРЭС» показали, что диспергирование струи расплава заявляемого состава стекла струей воды позволяет:

- снизить долю несферических частиц, а это увеличивает выход товарных фракций проппантов;

- повысить прочность проппантов и их проницаемость для использования при высоких давлениях в глубоких скважинах.

Источник поступления информации: Роспатент

Showing 1-10 of 49 items.
27.02.2013
№216.012.2a7b

Гипсовая смесь

Изобретение относится к области строительных материалов на основе полуводного гипса, в частности к строительным смесям для отделочных и кладочных работ, производству строительных деталей и конструкций, а также для декоративно-отделочных мелкоштучных работ. Гипсовая смесь включает вяжущее на...
Тип: Изобретение
Номер охранного документа: 0002476402
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ac5

Способ изготовления керамического проппанта и проппант

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002476476
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ac6

Способ изготовления композиционного магнийсиликатного проппанта и проппант

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002476477
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ac7

Способ изготовления магнийсиликатного проппанта и проппант

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта (ГРП). В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002476478
Дата охранного документа: 27.02.2013
20.06.2013
№216.012.4c7b

Способ утилизации некондиционных керамических проппантов с полимерным покрытием (варианты)

Изобретение относится к производству керамических проппантов для использования в нефтедобывающей промышленности в качестве расклинивающих агентов, а именно к утилизации некондиционных керамических проппантов. В способе утилизации некондиционных керамических проппантов с полимерным покрытием...
Тип: Изобретение
Номер охранного документа: 0002485161
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.605b

Проппант

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении операции гидравлического разрыва продуктивного пласта (ГРП) для повышения эффективности добычи углеводородного сырья. Проппант включает керамические гранулы, выполненные с открытой поверхностной...
Тип: Изобретение
Номер охранного документа: 0002490299
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6411

Способ переработки лома огнеупорных, строительных и керамических материалов для получения керамических сфер и керамическая сфера

Изобретение относится к технологии комплексной переработки промышленных отходов, а именно к переработке лома огнеупорных материалов с целью получения сферических материалов, которые могут быть использованы в качестве проппантов, мелющих тел, носителей катализаторов, огнеупорных заполнителей и...
Тип: Изобретение
Номер охранного документа: 0002491254
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6b94

Способ изготовления проппанта с полимерным покрытием

Изобретение относится к нефтегазодобывающей промышленности, а именно к производству проппантов с полимерным покрытием при добыче нефти и газа методом гидравлического разрыва пласта (ГРП). Способ изготовления проппанта с полимерным покрытием включает нанесение на гранулы полимерного покрытия из...
Тип: Изобретение
Номер охранного документа: 0002493191
Дата охранного документа: 20.09.2013
10.12.2013
№216.012.88d7

Способ изготовления высококремнеземистого керамического проппанта для добычи сланцевого газа

Изобретение относится к газонефтедобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче газа или нефти методом гидравлического разрыва пласта (ГРП). В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002500713
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8d34

Способ изготовления магнийсиликатного проппанта

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002501831
Дата охранного документа: 20.12.2013
Showing 1-10 of 42 items.
27.02.2013
№216.012.2ac5

Способ изготовления керамического проппанта и проппант

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002476476
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ac7

Способ изготовления магнийсиликатного проппанта и проппант

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта (ГРП). В способе изготовления...
Тип: Изобретение
Номер охранного документа: 0002476478
Дата охранного документа: 27.02.2013
10.04.2014
№216.012.b77a

Оптическое интерференционное устройство для измерения перемещений поверхностей объектов контроля

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и...
Тип: Изобретение
Номер охранного документа: 0002512697
Дата охранного документа: 10.04.2014
10.07.2014
№216.012.db93

Способ изготовления высокопрочного магнийсиликатного проппанта

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. Способ изготовления высокопрочного...
Тип: Изобретение
Номер охранного документа: 0002521989
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eef3

Способ изготовления гранулированного цеолита и цеолит

Изобретение относится к области синтеза цеолитных адсорбентов, которые могут быть использованы для осушки, очистки и разделения газов. Способ изготовления гранулированного цеолита типа NaA или NaX включает подготовку шихты на основе каолина. Каолин измельчают мокрым способом, в полученный...
Тип: Изобретение
Номер охранного документа: 0002526990
Дата охранного документа: 27.08.2014
27.10.2014
№216.013.0238

Способ комплексной переработки перлита

Изобретение относится к неорганическим мелкодисперсным материалам, а именно к полым остеклованным микросферам на основе перлита, и может быть использовано при изготовлении микросфер из других кислых гидроалюмосиликатов. Технический результат - получение упрочненной гидрофобной легковесной...
Тип: Изобретение
Номер охранного документа: 0002531966
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.023c

Способ изготовления гидрофобной легковесной микросферы на основе перлита

Изобретение относится к неорганическим мелкодисперсным материалам, а именно полым остеклованным микросферам на основе перлита, и может быть использовано при изготовлении микросфер из других кислых гидроалюмосиликатов. В способе изготовления гидрофобного, микросферического, легковесного...
Тип: Изобретение
Номер охранного документа: 0002531970
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0c49

Способ изготовления микросферического наполнителя на основе вспученного перлита

Изобретение относится к неорганическим мелкодисперсным материалам, а именно полым остеклованным микросферам на основе вспученного перлита. Технический результат - получение упрочненного и гидрофобизированного микросферического заполнителя. В способе изготовления микросферического наполнителя...
Тип: Изобретение
Номер охранного документа: 0002534553
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1016

Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. Способ изготовления ультралегковесного...
Тип: Изобретение
Номер охранного документа: 0002535540
Дата охранного документа: 20.12.2014
10.04.2015
№216.013.3cb9

Способ изготовления легковесного кремнеземистого магнийсодержащего проппанта

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов. Технический результат изобретения заключается в снижении разрушаемости гранул проппанта при сохранении низкой плотности материала. Исходную шихту, содержащую...
Тип: Изобретение
Номер охранного документа: 0002547033
Дата охранного документа: 10.04.2015
+ добавить свой РИД