×
10.04.2019
219.016.fedf

Результат интеллектуальной деятельности: Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области авиадвигателестроения. Ротор ТНД двигателя содержит вал РНД с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток. Диск рабочего колеса снабжен аппаратом подачи воздуха на охлаждение лопаток, содержащим напорное кольцо с воздухозаборной крыльчаткой. С тыльной стороны ступица диска выполнена за одно целое с консольным кольцевым элементом, выполненным с полифункциональным аэропрозрачным фланцем. Указанный фланец наделен отверстиями под крепежные элементы для разъемного соединения с цапфой, размещенными через одно с каналами тракта воздушного охлаждения ротора ТНД. С фронтальной стороны ступица диска наделена фланцем для разъемного соединения с кольцевым элементом ротора, огибающим ступицу диска и создающим совместно со ступицей пролонгированный канал тракта охлаждения ротора ТНД. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную длину пера лопатки и открыта на проток потока воздуха. Полость пера в средней наиболее теплонапряженной части наделена регулярной совокупностью стержней, наделенных функцией высокопроводной перемычки между стенками пера лопатки. Технический результат состоит в повышении эффективности охлаждения теплонапряженных элементов ТНД, надежности и ресурса ТНД и двигателя в целом. 5 н. и 3 з.п. ф-лы, 7 ил.

Группа изобретений относится к области авиадвигателестроения, а именно, к роторам турбины низкого давления стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов.

Известен ротор турбины низкого давления газотурбинного двигателя, включающий вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - диска и лопаток рабочего колеса. Лопатки выполнены пространственной формы с выпукло-вогнутым профилем пера с охлаждаемой полостью и хвостовиком, включающим елочный замок. Полость лопатки снабжена стержневыми перемычками (Н.Н. Сиротин, А.С. Новиков, А.Г. Пайкин, А.Н. Сиротин. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва. Наука 2011. стр. 495-522).

Известен ротор турбины низкого давления газотурбинного двигателя, включающий вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - диска и лопаток рабочего колеса. Охлаждаемая лопатка содержит перо, расположенное в направлении потока между передней и задней кромками и ограниченное стенками. Между стенками в полости расположены поперечно направлению потока воздуха стрежневые элементы (RU 2538978 С2, опубл. 10.01.2015)

К недостаткам известных решений относятся повышенная конструктивная сложность турбины, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков рабочего колеса турбины, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.

Задача, решаемая группой изобретений, объединенных единым творческим замыслом, состоит в повышении эффективности охлаждения элементов рабочего колеса ротора ТНД, ресурса и надежности турбины и двигателя в целом, используемого в составе газоперекачивающих агрегатов.

Поставленная задача решается тем, что ротор турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) в составе газотурбинной установки (ГТУ) газоперекачивающего агрегата (ГПА), согласно изобретению содержит вал ротора низкого давления (РНД) с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток, размещенных с угловой частотой γл.=(12,1÷17,2) [ед/рад], диск рабочего колеса выполнен в виде моноэлемента, включает ступицу с центральным отверстием, полотно с ободом и снабжен аппаратом подачи воздуха на охлаждение лопаток, содержащем тыльное напорное кольцо, консольно прикрепленное к полотну диска с образованием кольцевого напорного кармана и наделенное воздухозаборной крыльчаткой, причем с тыльной стороны диск рабочего колеса ТНД снабжен выполненным за одно целое со ступицей консольным кольцевым элементом с полифункциональным аэропрозрачным радиальным фланцем для разъемного соединения с ответным фланцем цапфы вала ротора ТНД, наделенным отверстиями под крепежные элементы разъемного соединения с цапфой, размещенными через один с каналами тракта воздушного охлаждения ротора ТНД с угловой частотой γотв.ф.т.=(4,8÷7,3) [ед/рад], а с фронтальной стороны ступица диска в том же радиальном диапазоне наделена цилиндрическим фланцем для разъемного соединения с кольцевым элементом ротора, огибающим ступицу диска, кроме того ступица диска рабочего колеса выполнена массивной с центральным отверстием радиусом, достаточным для свободного пропуска задней опоры ТВД и вала РНД, при этом максимальная осевая ширина ступицы с консольными элементами кольцевых фланцев выполнена не менее чем в 1,24 раза меньшей радиуса центрального отверстия ступицы, а полотно диска в корневом поперечном сечении имеет осевую ширину, меньшую не более чем в 1,8 раза ширины ступицы без консольных элементов кольцевых фланцев, при этом полотно диска рабочего колеса ТНД выполнено с градиентом Gп.д. убывания осевой толщины В полотна от ступицы к ободу, по меньшей мере, на большей части радиуса ΔR диска, определенным в диапазоне значений

Gп.д.=(Вп.к.п.п./ΔR=(0,13÷0,18), где Вп.к. и Вп.п.- осевая толщина полотна в прикорневой части над кольцевым элементом ротора и периферийной части под цилиндрическим фланцем крепления напорного кольца; ΔR=(Rп.п.-Rп.кк), где Rп.к. и Rп.п. - радиус полотна диска в прикорневой и периферийной части полотна; а высота проточной части лопаточного венца ротора ТНД выполнена в радиальном диапазоне ΔRп.ч.л.в. рабочего колеса, определенном из выражения

ΔRп.ч.л.в.=(Rmax п.ч.-Rmin п.ч.)/Rmax п.ч.=(0,26÷0,37), где Rmax п.ч. и Rmin п.ч. - максимальный и минимальный радиусы проточной части ротора ТНД, равные периферийному и корневому радиусам лопатки лопаточного венца рабочего колеса ротора ТНД.

При этом напорное кольцо аппарата подачи воздуха может быть установлено на тыльном кольцевом элементе полотна диска и совмещает не менее трех функций, а именно, первую функцию - рабочего органа, наделенного крыльчаткой для подачи охлаждающего воздуха в обод диска и в полость охлаждаемой лопатки; вторую функцию - кольцевого диска, совмещенного с держателем лабиринта, отделяющего полость тракта воздушного охлаждения ротора ТНД от проточной части турбины, и третью функцию - кольцевого диска, снабженного расположенным с нерабочей стороны лабиринта балансировочным кольцом с пазом для локального размещения балансировочных грузиков.

Поставленная задача решается тем, что по второму варианту ротор турбины низкого давления ТНД газотурбинного двигателя в составе ГТУ ГПА, согласно изобретению содержит вал РНД с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток ТНД, размещенных с угловой частотой γл.=(12,14÷17,2) [ед/рад]; диск рабочего колеса выполнен в виде моноэлемента, включающего ступицу с центральным отверстием, полотно с ободом, а вал РНД соединен со ступицей диска с тыльной стороны через консольный кольцевой элемент, выполненный за одно целое со ступицей и снабженный полифункциональным аэропрозрачным радиальным фланцем, разъемно соединенным с ответным фланцем цапфы вала РНД, при этом лопатка содержит хвостовик и перо с выпукло-вогнутым профилем стенок, сопряженных входной и выходной кромками, а в ободе диска выполнены пазы под елочные замки хвостовика лопатки с радиальной плоскостью симметрии, проходящей через ось двигателя, причем перо лопатки выполнено со спиральной закруткой относительно оси пера, создающей переменный по высоте угол ϕуст.л. установки профиля пера, определенный как угол между хордой, проведенной по центрам входной и выходной кромок, и фронтальной линией решетки профилей в плоской развертке цилиндрического сечения лопаточного венца, при этом угол ϕу.п. установки профиля пера выполнен убывающим по высоте лопатки с градиентом Gу.п. изменения угла ϕу.п., определенном из выражения в диапазоне значений

Gу.п.=(ϕу.п.к.у.п.п.)/Нл.=(0,47÷0,62) [рад/м],

где ϕу.п.к. и ϕу.п.п. - угол установки профиля в корневом и периферийном сечениях пера лопатки; Нл. - средняя высота пера лопатки; кроме того перо лопатки выполнено с отрицательной парусностью по высоте лопатки, определяемой градиентом Gпар.л. парусности лопатки

Gпар.л=(Впар.л.п.пар.л.к.)/Нл.=[-(3,4÷4,8)×10-2] [м/м]

где Впар.л.к. и Впар.л.п. - соответственно корневая и периферийная хорды пера, проведенные по центрам входной и выходной кромок профиля пера; а внутренняя полость пера в средней ее части снабжена совокупностью выполненных за одно целое с оболочкой пера лопатки стержневых элементов с поперечными и продольными рядами, наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки.

При этом периферийный торец лопатки может быть выполнен с бандажной полкой, наделенной, по меньшей мере, одним зубом лабиринтного уплотнения и имеющей Z-образные контактные торцы зацепления с бандажными полками смежных лопаток в бандажном кольце, а хвостовик лопатки с фронтальной стороны наделен пазом для заведения разрезного кольца, фиксирующего лопатки от осевых смещений, причем тракт воздушного охлаждения лопатки ротора ТНД на входе в полость лопатки проложен через хвостовик лопатки, включая последовательные участки канала тракта в елочном замке, ножке и полке к диффузорному выходу из полости в проточную часть турбины через каналы в периферийном торце, выполненные с площадью проходного сечения не менее чем в 3,35 раза превышающей площадь проходное сечение каналов на входе в полость лопатки.

Поставленная задача в части узла соединения вала ротора с диском рабочего колеса ТНД газотурбинного двигателя в составе ГТУ ГПА решается тем, что согласно изобретению узел соединения образован сочетанием двух кольцевых элементов - радиального фланца тыльного консольного кольцевого элемента, выполненного за одно целое со ступицей диска и ответного фланца цапфы вала РНД, при этом фланцевое соединение выполнено полифункциональным, совмещающем конструктивную функцию разъемного силового соединения двух указанных элементов с функцией аэропрозрачного многоканального переходного участка тракта воздушного охлаждения теплонапряженных элементов рабочего колеса ротора ТНД, при этом для выполнения первой из указанных функций фланец наделен отверстиями под крепежные элементы разъемного соединения с валом РНД, выполненными с угловой частотой γотв.ф.т.=(4,8÷7,3) [ед/рад], а для выполнения второй функции в указанном фланцевом соединении выполнены каналы тракта воздушного охлаждения, размещенные с регулярным чередованием не менее чем через одно отверстие под крепежные элементы, с суммарной выходной площадью Fвых. поперечного сечения указанного участка тракта воздушного охлаждения ротора, составляющую не менее одной пятой части от суммарной площади входных отверстий Fвх., выполненных в образующем канал подвода охлаждающего воздуха кольцевом элементе, огибающим ступицу диска ротора ТНД и сообщенном на входе через фронтальную промежуточную полость с расположенным под сопловым венцом лопаток соплового аппарата ТНД транзитным коллектором тракта воздушного охлаждения ротора ТНД.

Поставленная задача в части тракта воздушного охлаждения ротора ТНД газотурбинного двигателя в составе ГТУ ГПА решается тем, что согласно изобретению тракт воздушного охлаждения на входе включает узел подачи охлаждающего воздуха из воздухо-воздушного теплообменника (ВВТ) во входной коллектор соплового аппарата (СА) ТНД, размещенный в полом корпусе наружного кольца СА, функционально совмещенного с входным узлом тракта воздушного охлаждения сопловых лопаток СА, при этом входной коллектор наделен не менее чем двумя входными отверстиями, а тракт охлаждения ротора ТНД продолжен совокупностью транзитных трубок, пропущенных через центральную часть полости средней лопатки соплового блока с угловой частотой γт.т. в сопловом венце, определенной в диапазоне значений γт.т.=(1,43÷2,34) [ед/рад], и выведенных в промежуточный транзитный коллектор тракта, образованный внутренним кольцом СА, разъемно соединенным с элементами корпуса подшипника задней опоры ТВД, включая выполненную, по меньшей мере, частично за одно целое с ним фронтальную коническую диафрагму, наделенную кольцевым рядом напорных отверстий, и тыльную коническую диафрагму - крышку коллектора, имеющую ряд пропускных отверстий тракта, выполненных с угловой частотой γотв.к., определенной в диапазоне значений γотв.к.=(1,59÷2,86) [ед/рад], причем тракт воздушного охлаждения ротора ТНД пролонгирован каналом, который образован кольцевым элементом, огибающем ступицу диска рабочего колеса ТНД, запитан на входе охлаждающим потоком через ряд пропускных отверстий, выполненных в кольцевом элементе с угловой частотой γо.к.э., определенной в диапазоне значений γо.к.э.=(3,82÷5,73) [ед/рад], и на выходе сообщен через аэропрозрачное полифункциональное фланцевое соединение ступицы диска и цапфы вала ротора ТНД с примыкающей к диску ТНД промежуточной тыльной кольцевой полостью, посредством которой тракт сообщен с аппаратом подачу воздуха, подаваемого на охлаждение лопаток рабочего колеса ротора ТНД, включающим напорное кольцо, выполненное в виде моноколеса, наделенное с внутренней стороны крыльчаткой, образованной системой воздухозаборных лопаток, дифференцированных по конфигурации и длине, а также наделено функциями консольного держателя лабиринта и балансировочного кольца, расположенных с тыльной стороны кольца, при этом аппарат подачи воздуха сообщен с совокупностью входных каналов тракта охлаждения лопаток ТНД, выполненных в ободе диска рабочего колеса с плоским клиновидным расширением ко входу в полость лопатки с угловой частотой γк.о.д., определенной в диапазоне значений γк.о.д.=(12,1÷17,2) [ед/рад], а завершен тракт воздушного охлаждения ротора ТНД в полых лопатках рабочего колеса, открытых на проток по торцам, наделенным каждый парой разнесенных по ширине пера лопатки каналов с выходом нагретого воздуха в проточную часть турбины.

Поставленная задача части аппарата подачи воздуха в тракта воздушного охлаждения лопаток ротора ТНД газотурбинного двигателя в составе ГТУ ГПА, решается тем, что аппарат подачи воздуха согласно изобретению включает напорное кольцо, прикрепленное посредством цилиндрического фланца к полотну диска рабочего колеса дискретными крепежными элементами с угловой частотой γк.э.а.з., определенной в диапазоне значений γк.э.а.з.=(7,64÷11,46) [ед/рад], причем напорное кольцо выполнено в виде моноколеса, наделенного со стороны, обращенной к диску рабочего колеса ротора крыльчаткой, состоящей из системы наклонных воздухозаборных лопаток, дифференцированных по конфигурации и длине, а также конструктивно и функционально совмещено с кольцевым консольным держателем лабиринта и с балансировочным кольцом, расположенным с внешней стороны последнего, при этом лопатки в напорном кольце аппарата подачи воздуха выполнены двух типов, различающихся по длине и по форме, расположены с чередованием через одну с одинаковым наклоном в сторону вращения рабочего колеса под углом ϕл.а.х. с вершиной в точке пересечения касательной к контуру напорного кольца с осью более длинной лопатки, выполненной с постоянной шириной поперечного сечения, и/или с биссектрисой угла между гранями другой более короткой лопатки, выполненной клиновидной, а угол ϕл.а.з. в проекции на плоскость, нормальную к оси двигателя, определен в диапазоне значений ϕл.а.з.=(0,42÷0,64) [рад], причем длина L1 более длинных лопаток выполнена достаточной для пересечения под указанным углом полной радиальной ширины напорного кольца, а длина L2 более коротких клиновидных лопаток принята не менее 0,4 длины L1 более длинных лопаток L2>0,4L1 кроме того угол между гранями клиновидных лопаток принят обеспечивающим параллельность смежных граней длинной и более короткой лопатки крыльчатки аппарата подачи воздуха.

При этом аппарат подачи воздуха может быть сообщен с совокупностью входных каналов воздуха, подаваемого в тракт охлаждения лопаток рабочего колеса ротора ТНД, выполненных в ободе диска рабочего колеса с угловой частотой γк.о.д., определенной в диапазоне значений γк.о.д.=(12,14÷17,2) [ед/рад].

Технический результат, достигаемый группой изобретений, объединенных единым творческим замыслом, заключается в повышении эффективности охлаждения рабочего колеса ротора ТНД, ресурса и надежности ТНД за счет улучшения аэродинамических и конструктивных параметров элементов ротора турбины, а именно, пространственной конфигурации диска и лопаток, обеспечивающих возможность оптимизации профиля и площади проходных сечений проточной части турбины, а также выполнения диска рабочего колеса с радиальным фланцем, совмещающем конструктивную функцию силового соединения с валом РНД с функцией многоканального переходного участка тракта воздушного охлаждения ротора ТНД, конструктивной проработанности аппарата подачи воздуха во внутреннюю полость лопатки, достигая тем самым повышения жесткости турбины и снижения утечек воздуха, а также повышения эффективности охлаждения теплонапряженных элементов ротора ТНД в процессе работы двигателя, и как следствие, повышение КПД, надежности и ресурса турбины, а также технологической простоты изготовления без увеличения материало- и энергоемкости и технического обслуживания в процессе эксплуатации и двигателя.

Сущность группы изобретений поясняется чертежами, где:

на фиг. 1 изображен ротор турбины низкого давления с сопловым аппаратом ГТД, продольный разрез;

на фиг. 2 - фрагмент рабочего колеса ТНД с аппаратом подачи воздуха, подаваемого в полость лопатки, продольный разрез;

на фиг. 3 - вид по А на фиг. 2, фрагмент полифункционального аэропрозрачного радиального фланца ступицы диска рабочего колеса ротора ТНД, вид спереди;

на фиг. 4 - разрез по Б-Б на фиг. 3;

на фиг. 5 - вид по В-В на фиг. 2, фрагмент обода диска рабочего колеса ротора ТНД и аппарата подачи воздуха с крыльчаткой в разрезе; на фиг. 6 - лопатка рабочего колеса ротора ТНД, вид сбоку; на фиг. 7 - лопатка рабочего колеса ротора ТНД, продольный разрез.

В группе изобретений ротор турбины низкого давления газогенератора газотурбинного двигателя в составе ГТУ ГПА включает вал 1 ротора низкого давления (РНД) с цапфой 2 и рабочее колесо 3 турбины.

Рабочее колесо 3 содержит диск 4 и лопаточный венец с системой лопаток 5, размещенных с угловой частотой ул, определенной в диапазоне значений γл. =Nл./2π=(12,1÷17,2) [ед/рад], где N„.- число лопаток в лопаточном венце рабочего колеса ТНД. Диск 4 рабочего колеса 3 выполнен в виде моноэлемента и включает ступицу 6 с центральным отверстием, полотно 7 с ободом 8. Диск 4 рабочего колеса 3 снабжен аппаратом 9 подачи воздуха на охлаждение лопатки. Аппарат 9 подачи воздуха включает тыльное напорное кольцо 10, которое консольно прикреплено к полотну 7 диска 4 с образованием кольцевого напорного кармана 11. Напорное кольцо 10 наделено крыльчаткой, состоящей из системы наклонных воздухозаборных лопаток 12 и 13, дифференцированных по конфигурации и длине. С тыльной стороны диск 4 рабочего колеса 3 снабжен выполненным за одно целое со ступицей 6 консольным кольцевым элементом 14 с полифункциональным аэропрозрачным радиальным фланцем 15 для разъемного соединения с ответным радиальным фланцем 16 цапфы 2 вала 1 ротора ТНД. Фланец 15 наделен отверстиями 17 под крепежные элементы разъемного соединения с цапфой 2, размещенными через один с каналами 18 тракта воздушного охлаждения ротора ТНД с угловой частотой γотв.ф.т., определенной в диапазоне значений γотв.ф.т.=Nотв.ф.т./2π=(4,84÷7,3) [ед/рад],

где Nотв.ф.т. - число отверстий во фланце 16 под крепежные элементы разъемного соединения с цапфой 2.

С фронтальной стороны ступица 6 диска 4 в том же радиальном диапазоне наделена цилиндрическим фланцем 19 для разъемного соединения с кольцевым элементом 20 ротора, огибающем ступицу 6 диска ТНД.

Ступица 6 диска 4 рабочего колеса ТНД выполнена массивной с центральным отверстием радиусом, достаточным для свободного пропуска задней опоры 21 ТВД и вала 1 РНД. Максимальная осевая ширина ступицы 6 с консольными элементами кольцевых фланцев 15 и 19 выполнена не менее чем в 1,24 раза меньшей радиуса центрального отверстия ступицы 6. Полотно 7 диска 4 в корневом поперечном сечении имеет осевую ширину, меньшую не более чем в 1,8 раза ширины ступицы 6 без консольных элементов кольцевых фланцев 15 и 19.

Полотно 7 диска 4 рабочего колеса ТНД выполнено с градиентом Gп.д. убывания осевой толщины В полотна от ступицы к ободу, по меньшей мере, на большей части радиуса ΔR диска, определенным в диапазоне значений

Gп.д.=(Вп.к.-Вп.п.)/ΔR=(0,13÷0,18),

где Вп.к. и Вп.п. - осевая толщина полотна в прикорневой части над кольцевым элементом 20 ротора и периферийной части под цилиндрическим фланцем 22 крепления напорного кольца 10 аппарата подачи воздуха на охлаждение лопаток;

ΔR=(Rп.п.-Rп.кк), где Rп.к. и Rп.п. - радиус полотна 7 диска в прикорневой и периферийной части полотна.

Высота проточной части лопаточного венца ротора ТНД выполнена в радиальном диапазоне ARn.4^.B. рабочего колеса 3, определенном из выражения

ΔRп.ч.л.в.=( Rmax п.ч.-Rmin п.ч.)/Rmax п.ч.=(0,26÷0,37),

где Rmax п.ч. и Rmin п.ч. - максимальный и минимальный радиусы проточной части ротора ТНД, равные периферийному и корневому радиусам лопатки 5 лопаточного венца рабочего колеса ротора ТНД.

Лопатка 5 рабочего колеса ротора ТНД содержит хвостовик 23 и перо 24 с выпукло-вогнутым профилем стенок, сопряженных входной и выходной кромками 25 и 26. В ободе 8 диска 4 выполнены пазы под елочные замки 27 хвостовика 23 лопатки с радиальной плоскостью симметрии, проходящей через ось двигателя.

Перо 24 лопатки выполнено со спиральной закруткой относительно оси пера, создающей переменный по высоте угол ϕуст.л. установки профиля пера, определенный как угол между хордой, проведенной по центрам входной и выходной кромок 25 и 26, и фронтальной линией решетки профилей в плоской развертке цилиндрического сечения лопаточного венца. Угол ϕуст.п. установки профиля пера 24 выполнен убывающим по высоте лопатки 5 с градиентом Gуст.п изменения угла ϕуст.п, определенном из выражения в диапазоне значений

Gуст.п.=(ϕуст.п.к.уст.п.п.)/Нл.=(0,47÷0,62) [рад/м],

где ϕуст.п.к..и ϕуст.п.п. - угол установки профиля в корневом и периферийном сечении пера лопатки; Нл. - средняя высота пера лопатки.

Перо 24 лопатки 5 выполнено с отрицательной парусностью по высоте лопатки, определяемой градиентом Gпар.л. парусности лопатки

Gпар.л=(Впар.л.п.пар.л.к.)/Нл.=[-(3,4÷4,8)×10-2] [м/м]

где Впар.л.к. и Впар.л.п. - соответственно корневая и периферийная хорды пера, проведенные по центрам входной и выходной кромок профиля пера.

Внутренняя полость 28 пера 24 лопатки 5 в средней ее части снабжена совокупностью выполненных за одно целое с оболочкой пера лопатки стержневых элементов 29 с поперечными и продольными рядами, наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки.

Периферийный торец 30 лопатки 5 выполнен с бандажной полкой 31, имеющей Z-образные контактные торцы 32 зацепления с бандажными полками смежных лопаток в бандажном кольце. Бандажная полка 31 лопатки наделена, по меньшей мере, одним зубом 33 лабиринтного уплотнения для уменьшения радиального зазора между ротором и статором ТНД. Хвостовик 23 лопатки 5 с фронтальной стороны наделен пазом 34 для заведения разрезного кольца, фиксирующего лопатки 5 от осевых смещений.

Тракт воздушного охлаждения лопатки 5 ротора ТНД на входе в полость 28 лопатки проложен через хвостовик 23 лопатки, включая последовательные участки канала 35 тракта в елочном замке 27, ножке 36 и полке 37 к диффузорному выходу из полости 28 в проточную часть турбины через каналы 38 в периферийном торце 30 пера 24. Выходные каналы 38 в периферийном торце 30 пера выполнены с площадью проходного сечения не менее чем в 3,35 раза превышающей площадь проходное сечение каналов 39 на входе в полость 28 лопатки.

Узел соединения вала 1 ротора с диском 4 рабочего колеса 3 ТНД образован сочетанием двух кольцевых элементов - радиального фланца 15 тыльного консольного кольцевого элемента 14, выполненного за одно целое со ступицей 6 диска 4, и ответного фланца 16 цапфы 2 вала РНД. Фланцевый узел выполнен полифункциональным, совмещающем конструктивную функцию разъемного силового соединения фланцев 15 и 16 с функцией аэропрозрачного многоканального переходного участка тракта воздушного охлаждения теплонапряженных элементов рабочего колеса 3 ротора ТНД.

Для выполнения первой из указанных функций фланец 14 наделен отверстиями 17 под крепежные элементы разъемного соединения с цапфой 2 вала РНД, выполненными с угловой частотой γотв.ф.т.=(4,8÷7,3) [ед/рад].

Для выполнения второй функции во фланцевом соединении выполнены каналы 18 тракта воздушного охлаждения, размещенные с регулярным чередованием не менее чем через одно отверстие 17 под крепежные элементы. Суммарная выходная площадь Fвых. поперечного сечения указанного участка тракта воздушного охлаждения ротора составляет не менее одной пятой части от суммарной площади Fвх. входных отверстий 40, выполненных в образующем канал подвода охлаждающего воздуха кольцевом элементе 20, огибающим ступицу 6 диска 4 ротора ТНД и сообщенном на входе через фронтальную промежуточную полость 41 с расположенным под сопловым венцом лопаток 42 соплового аппарата 43 ТНД транзитным коллектором 44 тракта воздушного охлаждения ротора ТНД.

Предлагаемый изобретением тракт воздушного охлаждения ротора ТНД на входе включает узел подачи охлаждающего воздуха из ВВТ во входной коллектор 45 соплового аппарата 43 ТНД. Входной коллектор 45 размещен в полом корпусе наружного кольца 46 СА, наделен не менее чем двумя входными отверстиями и функционально совмещен с входным узлом тракта воздушного охлаждения сопловых лопаток 42 СА.

Тракт воздушного охлаждения ротора ТНД продолжен совокупностью транзитных трубок (на чертежах не показано), пропущенных через центральную часть полости средней лопатки 42 трехлопаточного соплового блока СА с угловой частотой утт.в сопловом венце, определенной в диапазоне значений

γт.т.=Nт.т./2π=(1,43÷2,34) [ед/рад],

где Nт.т. - количество транзитных трубок.

Транзитные трубки выведены в транзитный коллектор 44 тракта охлаждения. Коллектор 44 образован внутренним кольцом 47 СА, разъемно соединенным с элементами корпуса 48 подшипника задней опоры 21 ТВД, включая выполненную, по меньшей мере, частично за одно целое с ним фронтальную коническую диафрагму 49 и тыльную коническую диафрагму -крышку 50 транзитного коллектора 44. Фронтальная диафрагма 49 наделена кольцевым рядом напорных отверстий 51. Крышка 50 коллектора 44 наделена рядом пропускных отверстий 52, сообщающих транзитный коллектор 44 с промежуточной полостью 41 тракта охлаждения и выполненных с угловой частотой γотв.к., определенной в диапазоне значений

γотв.к.=Nотв.к./2π=(1,59÷2,86) [ед/рад],

где Nотв.к. - количество отверстий в крышке транзитного коллектора.

Тракт воздушного охлаждения пролонгирован каналом 53, который образован кольцевым элементом 20, огибающим ступицу 6 диска 4 рабочего колеса ротора ТНД. Канал 53 тракта запитан на входе охлаждающим потоком через ряд пропускных входных отверстий 40, выполненных в кольцевом элементе 20 с угловой частотой γо.к.э., определенной в диапазоне значений

γо.к.э.=Nо.к.э./2π=(3,82÷5,73) [ед/рад],

где Nо.к.э. - количество пропускных отверстий в кольцевом элементе 20.

На выходе канал 53 сообщен через аэропрозрачное полифункциональное соединение посредством фланцев 15 и 16 ступицы 6 диска 4 и цапфы 2 вала РНД с примыкающей к диску 4 ТНД тыльной промежуточной кольцевой полостью 54. Посредством тыльной полости 54 тракт охлаждения ротора ТНД сообщен с аппаратом 9 подачи воздуха, подаваемого на охлаждение лопаток 5 рабочего колеса 3 ротора ТНД. Завершен тракт воздушного охлаждения ротора ТНД в полых лопатках 5 рабочего колеса 3 ротора ТНД, открытых на проток по торцам, наделенным каждый парой разнесенных по ширине пера лопатки каналов 39 на входе и каналов 38 в периферийном торце 30 пера лопатки с выходом нагретого воздуха в проточную часть турбины.

Заявленный аппарат подачи воздуха в тракт воздушного охлаждения лопатки ротора ТНД включает напорное кольцо 10, прикрепленное посредством цилиндрического фланца 55 к полотну 7 диска 4 рабочего колеса 3 дискретными крепежными элементами 56 с угловой частотой γк.э.а.з., определенной в диапазоне значений

γк.э.а.з.=Nк.э.а.з./2π=(7,64π11,46) [ед/рад],

где Nк.э.а.з. _ количество крепежных элементов фланцевого соединения аппарата подачи воздуха.

Напорное кольцо 10 выполнено в виде моноколеса, наделенного со стороны, обращенной к диску 4 рабочего колеса ротора воздухозаборной крыльчаткой, а также конструктивно и функционально совмещено с кольцевым консольным держателем 57 лабиринта и с балансировочным кольцом 58, расположенным с внешней стороны последнего.

Крыльчатка состоит из системы наклонных воздухозаборных длинных и коротких лопаток 12 и 13, дифференцированных по конфигурации и длине. Длинные лопатки 12 выполнены с постоянной шириной поперечного сечения, короткие лопатки 13 выполнены клиновидной формы. Лопатки 12 и 13 расположены с чередованием через одну с одинаковым наклоном в сторону вращения рабочего колеса 3 под углом ϕл.а.з. с вершиной в точке пересечения касательной к контуру напорного кольца 10 с осью более длинной лопатки 12 и/или с биссектрисой угла между гранями другой более короткой лопатки 13. Угол ϕл.а.з. в проекции на плоскость, нормальную к оси двигателя определен в диапазоне значений ϕл.а.з.=(0,42÷0,64) [рад]. Длина L1 длинных лопаток 12 выполнена достаточной для пересечения под указанным углом ϕл.а.з. полной радиальной ширины напорного кольца 10 ротора ТНД. Длина L2 коротких клиновидных лопаток 13 принята не менее 0,4 длины Li длинных лопаток L2≥0,4L1. Угол между гранями клиновидных лопаток 13 принят обеспечивающим параллельность смежных граней длинной и короткой лопаток 12 и 13 напорного кольца 10 аппарата 9 подачи воздуха на охлаждение лопаток.

Аппарат 9 подачи воздуха сообщен с совокупностью каналов 59 воздуха, подаваемого на охлаждения лопаток 5 рабочего колеса ротора ТНД, выполненных в ободе 8 диска 4 рабочего колеса с плоским клиновидным расширением ко входу в полость 28 лопатки с угловой частотой γк.о.д., определенной в диапазоне значений γк.о.д.=(12,1÷17,2) [ед/рад].

Напорное кольцо 10 совмещает не менее трех функций, а именно, первую функцию рабочего органа, наделенного крыльчаткой для подачи охлаждающего воздуха в обод 8 диска и в полость 28 охлаждаемой лопатки 5; вторую функцию - кольцевого диска, совмещенного с держателем 57 лабиринта, отделяющего полость 54 тракта воздушного охлаждения ротора ТНД от проточной части турбины, и третью функцию кольцевого диска, снабженного расположенным с нерабочей стороны лабиринта балансировочным кольцом 58 с пазом для локального размещения балансировочных грузиков.

Технический результат группы изобретений достигают совокупностью разработанных в изобретении аэродинамических конструктивных и аэродинамических решений и геометрических параметров основных элементов рабочего колеса ТНД, а именно, радиальных параметров диска, геометрической конфигурации обода с каналом подачи воздуха в полость лопатки, принятого сочетания тонкого полотна и осевой ширины ступицы с консольными элементами кольцевых фланцев, компенсирующей ослабление полотна диска центральным отверстием, что приводит к снижению материалоемкости и повышению максимальных допустимых усилий в элементах диска. Диаметр отверстия в ступице принят достаточным для свободного пропуска вала РНД и задней опоры ТВД. Литая конструкция лопаток, выполненных со спиральной закруткой с соблюдением парусности пера по высоте и объемной решеткой во внутренней полости лопатки из высокотеплопроводных стрежней, обладая высокой жесткостью, обеспечивает стабильность установки лопатки и снижение утечек воздуха. Технический результат достигают при выполнении лопаток с заявленным диапазоном градиента Gyст.п. осевой закрутки пера лопатки и градиентом Gпар.л. парусности лопатки, выход за пределы интервала в большую или меньшую сторону приводит к рассогласованию эффективности работы лопатки в периферийной и при корневой зонах лопатки и к снижению эффективности охлаждения лопатки. Конструктивные параметры многофункционального напорного кольца аппарата подачи воздуха на охлаждение лопаток, установленного на тыльном кольцевом элементе полотна диска, также обладая высокой жесткостью, обеспечивает стабильность и эффективность работы ТНД.

Рабочее колесо ротора ТНД выполняют следующим образом. Диск 4 рабочего колеса выполняют в виде моноэлемента, включающего ступицу 6 с центральным отверстием и консольными кольцевыми элементами 15 и 19, полотно 7 с ободом 8. Рабочая лопатка 5 ТНД - литая, охлаждаемая с радиальным течением охлаждающего воздуха. Во внутренней полости 28 размещают высокотеплопроводные стержни 29. Периферийная бандажная полка 31 обеспечивает уменьшение радиального зазора, что ведет к повышению КПД турбины. За счет трения контактных поверхностей бандажных полок соседних рабочих лопаток происходит снижение вибрационных нагрузок. Перо 24 лопатки 5 отделено от замковой части полкой 37 в хвостовике 23, формирующей границу потока и защищающую диск от нагрева. Для осевой фиксации лопатки от перемещения против потока на ней выполнен зуб 33. Для осевой фиксации лопатки от перемещения по потоку в хвостовике лопатки выполнен паз, в который входит разрезное кольцо 60 со вставкой.

Охлаждают ротор ТНД газотурбинного двигателя следующим образом. В процессе работы ГТД охлаждающий воздух из ВВТ через два входных отверстия подают во входной коллектор 45 соплового аппарата 43 ТНД. Из входного коллектора 45 часть потока охлаждающего воздуха (~60%) через одиннадцать транзитных трубок поступает в промежуточный транзитный коллектор 44. Из транзитного коллектора 44 через двенадцать пропускных отверстий 52 в крышке 50 коллектора 44 воздух поступает в промежуточную полость 41, охлаждая с фронтальной стороны диск 4 рабочего колеса ТНД. Далее охлаждающий воздух через тридцать отверстий 40 в кольцевом элементе 20 ротора, огибающем ступицу 6 рабочего колеса поступает в канал 53 тракта охлаждения ротора ТНД. На выходе из канала 53 воздух через каналы 18 во фланце 15 ступицы 6 рабочего колеса и цапфы 2 вала РНД поступает в тыльную промежуточную кольцевую полость 54, охлаждая диск 4 рабочего колеса с тыльной стороны и одновременно направляя поток воздуха в напорное кольцо 10 аппарата 9 подачи воздуха на охлаждение лопаток 5. В напорном кольце 10 воздух, проходя через систему воздухозаборных лопаток 12 и 13 крыльчатки и получая подпор давления, поступает в каналы 35 в хвостовике 23 лопатки и заполняет на проток полость 28 пера 24 лопатки. Охлаждающий воздух проходит через решетку стержней 29, увеличивая теплосъем с пера 24 лопатки в средней наиболее теплонапряженной части лопатки, и через отверстия 38 в периферийном торце 30 пера 24 нагретый теплосъемом воздух выходит в проточную часть турбины. При этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки.

Таким образом, за счет улучшения конструктивных и аэродинамических параметров элементов ротора ТНД достигают повышение эффективности охлаждения теплонапряженных элементов ТНД, надежности и ресурса ТНД и двигателя в целом, используемого в составе ГТУ ГПА и в том числе на компрессорных станциях нефтегазовой и энергетической промышленности.


Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД
Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД
Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД
Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД
Источник поступления информации: Роспатент

Showing 91-100 of 110 items.
22.12.2019
№219.017.f09f

Система суфлирования воздуха в авиационном газотурбинном двигателе

Изобретение относится к авиадвигателестроению и касается устройства системы суфлирования воздуха авиационного газотурбинного двигателя (далее ГТД). Задачей изобретения является снижение расхода масла в ГТД за счет рациональной организации подвода воздуха и отвода масла от суфлера. Указанная...
Тип: Изобретение
Номер охранного документа: 0002709751
Дата охранного документа: 19.12.2019
22.12.2019
№219.017.f0ea

Способ изготовления высокоточной заготовки из порошка титанового сплава

Изобретение относится к изготовлению высокоточной заготовки из порошка титанового сплава. Способ включает послойное выращивание заготовки на установке прямого лазерного выращивания с использованием данных 3D-модели заготовки в программном обеспечении или внесенных оператором данных программы...
Тип: Изобретение
Номер охранного документа: 0002709694
Дата охранного документа: 19.12.2019
17.01.2020
№220.017.f663

Способ сигнализации наличия горения в форсажной камере воздушно-реактивного двигателя

Изобретение относится к измерительной технике, и может быть использовано, например, для сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя. Способ сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя, включающий регистрацию...
Тип: Изобретение
Номер охранного документа: 0002711186
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f6f2

Система управления положением направляющих аппаратов компрессора газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для регулирования положения направляющих аппаратов компрессора газотурбинного двигателя (ГТД). Техническим результатом настоящего изобретения является разработка системы управления положением...
Тип: Изобретение
Номер охранного документа: 0002711187
Дата охранного документа: 15.01.2020
01.02.2020
№220.017.fc8d

Датчик ионизационный сигнализатора пламени

Изобретение относится к конструкции ионизационных датчиков и применяется в турбореактивных двигателях для сигнализации розжига форсажной камеры. Датчик ионизационный сигнализатора пламени содержит центральный электрод ионизации с внутренним охлаждающим каналом, а также входным и выходным...
Тип: Изобретение
Номер охранного документа: 0002712532
Дата охранного документа: 29.01.2020
05.02.2020
№220.017.fdc7

Способ формирования размеров светового пятна на динамическом объекте и устройство для его осуществления

Изобретение относится к квантовой электронике, конкретно к способам формирования световых пятен от излучения концентрических излучателей, и может быть использовано при создании технологических устройств, в частности, интегрированных в конструкцию газотурбинного двигателя, для адаптивного...
Тип: Изобретение
Номер охранного документа: 0002713128
Дата охранного документа: 03.02.2020
06.03.2020
№220.018.0989

Способ закрепления тензорезистора на поверхности детали

Изобретение относится к измерительной технике, а именно к способам монтажа тензорезисторов на объектах детали, которые имеют кривизну и сложную геометрическую форму, и может быть использовано при испытаниях высоконагруженных материалов и конструкций, в частности лопаток газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002715890
Дата охранного документа: 04.03.2020
25.04.2020
№220.018.18b5

Устройство для транспортировки и монтажа газотурбинного двигателя

Изобретение относится к технике испытаний авиационных газотурбинных двигателей в стендовых условиях и может быть использовано при транспортировке и монтаже технологического оборудования в условиях эксплуатации, в частности при ремонте двигателя. Устройство для транспортировки газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002720056
Дата охранного документа: 23.04.2020
25.04.2020
№220.018.18b8

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФКС). Техническим результатом настоящего изобретения является...
Тип: Изобретение
Номер охранного документа: 0002720059
Дата охранного документа: 23.04.2020
25.04.2020
№220.018.18c4

Газодинамическое уплотнение опоры ротора газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок. Изобретение позволяет повысить надежность работы газотурбинного двигателя и расширить его эксплуатационные возможности....
Тип: Изобретение
Номер охранного документа: 0002720057
Дата охранного документа: 23.04.2020
Showing 91-100 of 403 items.
27.03.2015
№216.013.353b

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от...
Тип: Изобретение
Номер охранного документа: 0002545111
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.36fa

Способ формирования радиопоглощающих топологий на носителях

Изобретение относится к материалам, поглощающим электромагнитные волны, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов и оборудования наземной, авиационной и космической техники. Способ формирования радиопоглощающих топологий на...
Тип: Изобретение
Номер охранного документа: 0002545562
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3a23

Охлаждаемая турбина

Охлаждаемая турбина авиационного газотурбинного двигателя содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенные с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, сопловые лопатки и...
Тип: Изобретение
Номер охранного документа: 0002546371
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3eb3

Приводной центробежный суфлер для высокотемпературного газотурбинного двигателя

Изобретение относится к элементам систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных высокотемпературных ГТД. В известном приводном центробежном суфлере, содержащем пристыкованный к КПА корпус с каналами подвода газомасляной...
Тип: Изобретение
Номер охранного документа: 0002547539
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3eb4

Масляная система газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения и касается устройства маслосистемы газотурбинного двигателя. В масляной системе, содержащей подключенную к масляным полостям опор ротора магистраль откачки масловоздушной эмульсии, сообщенную с маслобаком, и центробежный суфлер с...
Тип: Изобретение
Номер охранного документа: 0002547540
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4160

Способ контроля технического состояния и обслуживания газотурбинного двигателя при его эксплуатации

Способ контроля технического состояния и обслуживания газотурбинного двигателя с форсажной камерой сгорания. Способ включает измерение давления топлива в коллекторе форсажной камеры сгорания двигателя, которое проводят периодически, сравнение полученного значения давления топлива в коллекторе...
Тип: Изобретение
Номер охранного документа: 0002548234
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.48fa

Способ обезвреживания циансодержащих растворов и пульп

Изобретение относится к способам очистки, обезвреживания цианид- и роданидсодержащих сточных вод и может быть использовано для обезвреживания жидкой фазы и пульпы хвостов цианидного выщелачивания благородных металлов из руд, концентратов и техногенных отходов. Способ заключается в перемешивании...
Тип: Изобретение
Номер охранного документа: 0002550189
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c1d

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002550999
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c21

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551003
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c23

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для...
Тип: Изобретение
Номер охранного документа: 0002551005
Дата охранного документа: 20.05.2015
+ добавить свой РИД