×
30.03.2019
219.016.f92e

СПОСОБ РЕГЕНЕРАЦИИ МОЛИБДЕНСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ГИДРОКОНВЕРСИИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии:растворитель 1:2-1:4, концентрата отработанного катализатора, содержащего распределенные ультрадисперсные частицы MoS; окисление концентрата катализатора водным раствором смеси азотной и серной кислот при 25-100°С; нейтрализацию суспензии катализатора до рН>6 водным раствором аммиака с последующим разделением на водный раствор, представляющий собой прекурсор катализатора, и твердый остаток, содержащий соединения ванадия и никеля, в качестве растворителя используют толуол, или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга. Растворитель, выделенный после сепарации, возвращают для растворения остатка гидроконверсии. Водный раствор смеси кислот содержит от 600 до 800 г/л HNO и от 100 до 200 г/л HSO. Окисление концентрата катализатора проводят от 30 до 360 минут. Технический результат - повышенная степень извлечения молибдена из концентрата отработанного катализатора, выделенного из непревращенного остатка вакуумной дистилляции продукта гидроконверсии, с исключением выбросов токсичных соединений серы, ванадия и других металлов, в том числе соединений молибдена. 4 з.п. ф-лы, 2 табл., 25 пр., 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области нефтепереработки, а именно к регенерации отработанного молибденсодержащего катализатора из остатка гидроконверсии тяжелого углеводородного (нефтяного) сырья и может быть использовано в гидроконверсии с применением молибденсодержащих нано-размерных катализаторов.

Гидроконверсия тяжелого нефтяного сырья используется для повышения выхода и качества легких и средних дистиллятов. При этом тяжелые углеводороды, содержащие асфальтены, смолы, гетероорганические и металлсодержащие соединения превращают в более легкие продукты и средние дистилляты с более низкой температурой кипения. Переработка тяжелого нефтяного сырья осложнена присутствием в его составе асфальтенов, смол, соединений металлов, вызывающих дезактивацию существующих промышленных катализаторов. Использование для этой цели традиционного гетерогенного катализатора на носителе неэффективно. С утяжелением сырья резко сокращается срок службы катализатора, создается проблема утилизации нанесенного отработанного катализатора. Для решения этой проблемы в последнее время применяются ультрадисперсные (наноразмерные) катализаторы без носителей.

Наиболее эффективным процессом, позволяющим до 90% конвертировать тяжелое нефтяное сырье в легкие и средние дистилляты - компоненты моторных топлив и сырье для нефтехимии, является процесс гидроконверсии с использованием ультрадисперсного наноразмерного молибденсодержащего катализатора, который постоянно выводятся из реакционной зоны вместе с остаточным продуктом процесса (см. Хаджиев С.H., Кадиев X.М., Кадиева М.X. Синтез и свойства наноразмерных систем - эффективных катализаторов гидроконверсии тяжелого нефтяного сырья. // Нефтехимия. - 2014. - Т. 54. - №5. - С. 327-351). Ввиду дороговизны соединений молибдена возникает необходимость разработки способа их извлечения из продуктов гидроконверсии. Отсутствие в настоящее время эффективной технологии регенерации ультрадисперсных катализаторов является сдерживающим фактором их практического применения при переработке тяжелого нефтяного сырья. Повышение эффективности применения ультрадисперсных катализаторов связано с возможностью их регенерации из тяжелого непревращенного остатка и повторного использования в технологическом процессе.

Известен ряд методов, относящихся к извлечению молибдена из мо-либденсодержащих катализаторов.

В патенте РФ №2146274 описан способ регенерации ультрадисперсного катализатора гидроконверсии тяжелых нефтяных остатков, согласно которому извлечение компонента катализатора (молибдена) производят путем сжигания выводимой остаточной фракции (выше 350°С) в котле при температуре 1000-1200°С с улавливанием золошлаковых остатков. Из уловленных золошлаковых остатков извлечение молибдена производят гидрометаллургическим методом с использованием водно-аммиачного раствора. Остаток после фильтрации представляет собой концентрат металлов (ванадия, никеля и др.), содержащихся в исходном сырье. Достигаемая степень извлечения молибдена не превышает 80%.

Недостатком данного способа является необходимость сжигания большого количества (10-40%) остатка продуктов гидроконверсии с температурой кипения выше 350°С, что снижает количество легких дистиллятных продуктов гидрогенизации и требует повышенных затрат на очистку дымовых газов от сернистых соединений, образующихся при сжигании, повышенные потери молибдена с дымовыми газами.

В патенте США 7214309 В2 описан способ регенерации катализатора облагораживания (гидрокрекинга, гидроочистки, гидрообессеривания и т.д.) тяжелых нефтяных остатков - высокоактивной суспензии соединений металлов группы VIB (Mo, W) и группы VIII (Ni или Со) в углеводородном масле, включающий стадии удаления масла экстракцией растворителем с выделением фильтрацией металлсодержащего коксового остатка, многостадийную экстракцию компонентов катализатора из твердого коксового остатка различными растворителями. Очевидно, что в этом процессе эффективное извлечение катализатора будет происходить при проведении процесса облагораживания в условиях, при которых катализатор будет связываться коксом.

Недостатком известного способа является сложность и дороговизна многостадийного ступенчатого извлечения катализатора из непревращенного остатка.

В патенте США 7737068 В2 компанией CHEVRON предложен способ регенерации катализатора, суспендированного в тяжелой нефти, включающий пиролиз (коксование) суспензии катализатора в тяжелом продукте при 450-510°С, с получением более легких продуктов: газа, масла и кокса. Кокс измельчают в шаровой мельнице до 44 мкм и проводят выщелачивание в автоклаве водным раствором аммиака в присутствии кислорода. Недостатком метода является сложность технологической схемы, включающей стадии коксования суспензии, содержащей катализатор, с соответствующими системами разделения продуктов коксования, измельчения кокса и многоступенчатого выщелачивания металлов, что обусловливает повышенные капитальные и эксплуатационные затраты.

Наиболее близким аналогом (прототипом) предлагаемого изобретения является описанный в патенте США 7771584 В2, согласно которому из остатка гидроконверсии, выкипающего выше 350°С, методом экстракции с использованием растворителя (толуол, нафта) проводят разделение непревращенного остатка на жидкие углеводороды и твердый продукт путем центрифугирования, фильтрации и сушки. Выделенный твердый продукт представляет собой концентрат катализатора и других металлов, содержащихся в исходном сырье, который далее контактирует с экстрагирующим металлы растворителем (таким как, кетоксим), после нескольких ступеней экстракции растворителем, выщелачивания и кристаллизации достигается извлечение металлов; побочный продукт - сульфат аммония; ванадий извлекается в виде V2O5; никель - в форме сульфата никеля; молибден - в форме димолибдата аммония. Сульфат никеля и димолибдат аммония возвращаются в узел приготовления сларри катализатора (суспензионного катализатора). Размер частиц катализатора в непревращенном остатке гидроконверсии составляет от 50 до 500 нм. Следовательно, при отделении катализатора от остатка гидроконверсии, возможно, будут иметь место потери молибдена вследствие перехода определенной его части в отделяемые жидкие углеводороды.

Недостатками прототипа являются:

- сложная и затратная схема выделения молибдена из остатка гидроконверсии, выкипающего выше 350°С, включающая многоступенчатую экстракцию целевого компонента (Мо) дорогостоящим растворителем с последующей регенерацией и возвратом растворителя, выщелачивание Мо ступенчато в несколько стадий, выделение димолибдата аммония его кристаллизацией с последующей фильтрацией и высушиванием;

- возможность потерь молибдена с отделяемыми жидкими углеводородами.

В патенте отсутствует информация о количественном извлечении молибдена в димолибдата аммония, ванадия - в V2O5; никеля - в NiS, что не позволяет оценить степень его извлечения и возврата в процесс.

Задачами изобретения является удешевление и упрощение технологического процесса регенерации ультрадисперсного катализатора, выделенного из остатка гидроконверсии при максимальной степени перевода молибдена в водный раствор прекурсора катализатора.

Для решения поставленной задачи в способе регенерации молибденсодержащего катализатора из остатка гидроконверсии тяжелого сырья, включающем стадию выделения концентрата катализатора растворением остатка гидроконверсии, сепарацией полученного раствора на жидкий фильтрат и остаток концентрата катализатора с последующей его сушкой, и стадию окисления выделенного концентрата катализатора водным раствором окислителя с выщелачиванием соединения молибдена, в качестве остатка гидроконверсии используют остаток, выкипающий выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии: растворитель 1:2-1:4, фильтрат со стадии выделения концентрата катализатора разделяют на жидкие углеводороды и растворитель, стадию окисления выделенного концентрата катализатора, включающего сульфид молибдена, проводят при температуре от 25 до 100°С, в качестве окислителя используют водный раствор смеси азотной и серной кислот, после чего суспензию катализатора нейтрализуют водным раствором аммиака до получения раствора с рН>6 и фильтруют с выделением водного раствора прекурсора катализатора и твердого остатка фильтрации суспензии, содержащего соединения ванадия, никеля и других металлов.

В качестве растворителя используют толуол или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга, причем растворитель, выделенный после сепарации, возвращают для растворения остатка гидроконверсии.

В качестве водного раствора окислителя используют водный раствор, содержащий от 600 до 800 г/л HNO3 и от 100 до 200 г/л H2SO4.

Окисление концентрата катализатора проводят в течение от 30 до 360 минут.

Остаток фильтрации суспензии могут использовать для получения соединений ванадия и никеля.

Способ представляет собой относительно простое технологическое решение, позволяющее выделить концентрат катализатора с количественным переходом в него соединений молибдена с последующим его переводом в водный раствор прекурсора катализатора.

Важным техническим результатом настоящего изобретения также является отсутствие выбросов в атмосферу токсичных соединений серы, соединений металлов.

Регенерацию прекурсора катализатора осуществляют в результате последовательных химических реакций, протекающих на стадии окисления и выщелачивания:

Концентрированная азотная кислота окисляет дисульфид молибдена с получением молибденовой кислоты (1), которая выпадает в осадок, тем самым ингибируя процесс окисления оставшегося количества M0S2. При добавлении серной кислоты повышается концентрация сульфат-ионов в растворе и равновесие смещается в сторону образования анионных комплексов ([MoO2(SO4)2])-2) (2), что позволяет полностью удерживать молибден в растворе. Кроме того, известно, что H2SO4 улучшает смачиваемость концентрата, что обеспечивает протекание реакции окисления MOS2 с максимальной скоростью с самого начала.

При нейтрализации образовавшегося кислого раствора до рН>6 действием водного раствора аммиака, молибден переходит в форму прекурсора катализатора гидроконверсии - (NH4)2MoO4 (3).

Указанный технический результат достигается за счет следующей совокупности признаков изобретения. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, концентрата катализатора, содержащего ультрадисперсные твердые частицы MOS2; обработку концентрата катализатора водным раствором смеси азотной и серной кислот; нейтрализацию полученной суспензии водным раствором аммиака до рН>6; фильтрацию суспензии с получением раствора прекурсора молибденсодержащего катализатора гидроконверсии и твердого остатка, содержащего соединения ванадия, никеля и других металлов.

Предлагаемый способ позволяет снизить нагрузку на блок выделения катализатора методом фильтрации более тяжелого продукта за счет снижения объема поступающего на фильтрацию остатка гидроконверсии, повысить степень извлечения молибдена из остатка гидроконверсии, исключить выбросы токсичных соединений серы, ванадия и других металлов, в том числе соединений молибдена.

Изобретение поясняется чертежом (фиг. 1), на котором представлена блочная схема реализации способа регенерации молибденсодержащего катализатора гидроконверсии тяжелого углеводородного сырья, который включает в себя следующие стадии: выделение концентрата катализатора из остатка гидроконверсии (I); извлечение и возврат использованного растворителя (II); перевод соединения молибдена в водорастворимую форму действием смеси кислот (III) - окислением и выщелачиванием; разделение суспензии на раствор прекурсора катализатора и твердый остаток, содержащий соединения ванадия, никеля и других металлов (IV), путем нейтрализации водным раствором аммония и фильтрации.

На первой стадии остаток, кипящий выше 500°С (1) и растворитель (толуол, фракция НК-120°С продукта гидроконверсии, легкий газойль каталитического крекинга) (2) при соотношении 1:(2-4) смешивают в блоке выделения концентрата катализатора (I) при температуре 90°С, а затем разделяют на жидкий и твердый продукт методом фильтрации. Из жидких продуктов (10) в блоке сепарации (II) отгоняют и возвращают на блок разделения (I) растворитель (11), а остаток сепарации - жидкие углеводороды (12) выводят и повторно подвергают гидроконверсии в качестве рисайкла в смеси со свежим сырьем. Остаток на фильтре блока разделения сушат при температуре 130°С. Далее высушенный остаток, представляющий собой концентрат катализатора, (3) направляют в блок окисления концентрата катализатора (III) водным смесевым раствором, содержащим от 600 до 800 г/л HNO3 и от 100 до 200 г/л H2SO4 (4). Предпочтительно использование раствора, содержащего 800 г/л HNO3 и 200 г/л H2SO4. Обработку концентрата катализатора проводят при следующих условиях: массовое соотношение концентрат катализатора (Т): раствор (Ж) - от 1:2,5 до 1:4; температура от 25 до 100°С; постоянное перемешивание; длительность обработки от 0,5 до 6 ч (предпочтительно: температура - 90°С; Т/Ж=1/3; время обработки - 2 ч.). Азотная кислота регенерируется из отходящих газов (9) известным промышленным методом, например, водной адсорбцией NO2 в токе кислорода и возвращается в процесс.

Суспензию (5) перед поступлением в блок фильтрации (IV) смешивают с водным раствором аммиака до получения значения рН>6, при котором выпадает в осадок часть ванадия и никеля. В блоке фильтрации суспензию разделяют на два потока: водный раствор парамолибдата аммония (прекурсора ультрадисперсного молибденового катализатора) (7), возвращаемого в процесс подготовки катализатора, и твердый продукт, представляющий собой концентрат соединения ванадия, никеля и других металлов (8).

Изобретение иллюстрируется следующими примерами.

Примеры выделения концентрата катализатора.

Пример 1.

В качестве остатка используют остаток >500°С гидроконверсии гудрона смесей Западносибирских нефтей, содержание молибдена в котором составлят 2813,5 г/т.

Для выделения концентрата катализатора в качестве растворителя используют химически чистый толуол (Х.Ч.) чистотой 99,8% по ТУ 2631-020-44493179-98. В экстрактор загружают остаток >500°С и толуол при массовом соотношении, равном 1:2, включают перемешивание и нагрев. Температуру смеси держат на уровне 90°С в течение 0,5 ч., после чего смесь подвергают фильтрации. Фильтрацию проводят в воронке Бюхнера под вакуумом. В качестве фильтрующего элемента используют бумажный фильтр («фиолетовая лента» марки FILTRAK). Фильтр с остатком промывают толуолом до тех пор, пока выделяемый фильтрат не становится бесцветным. Остаток на фильтре сушат при температуре 130°С в течение 1 ч. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 2.

Способ осуществляют аналогично примеру 1, но обработку проводят при массовом соотношении остаток >500°С и толуол, равном 1/4. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 3.

Способ осуществляют аналогично примеру 1, но обработку проводят с использованием в качестве растворителя фракцию гидроконверсии НК-120°С при массовом соотношении остаток >500°С: фракция НК-120°С, равным 1/2. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 4.

Способ осуществляют аналогично примеру 3, но обработку проводят при массовом соотношении остаток >500°С: фракция НК-120°С, равном 1/4. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 5.

Способ осуществляют аналогично примеру 3, но обработку проводят с использованием в качестве растворителя легкого газойля каталитического крекинга при массовом соотношении остаток >500°С: легкий газойль, равном 1/2. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 6.

Способ осуществляют аналогично примеру 5, но обработку проводят при массовом соотношении остаток >500°С: легкий газойль, равном 1/4. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Примеры окисления и фильтрации концентрата катализатора.

Пример 7.

Высушенный остаток, полученный в примере 1, представляющий собой концентрат катализатора, в стеклянной емкости с мешалкой при соотношении Т/Ж=1/4 подвергают к обработке смесью кислот, содержащей 600 г/л HNO3 («ХЧ» ГОСТ 4204-77) и 100 г/л H2SO4 («Ч.д.а» ГОСТ 4461-77), при температуре 100°С и постоянном перемешивании в течение 0,5 ч. В полученную суспензию с рН<6 перед фильтрационным разделением добавляют 25% водный раствор аммиака («ОСЧ» ГОСТ 24147-80) до получения значения рН>6, после чего фильтруют с получением фильтрата, представляющего собой прекурсор ультрадисперсного наноразмерного молибденового катализатора, и твердого остатка на фильтре, содержащего соединения ванадия, никеля и других металлов.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 8.

Способ осуществляют аналогично примеру 7, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2

Пример 9.

Способ осуществляют аналогично примеру 7, но обработку концентрата катализатора проводят при температуре 25°С и длительности обработки 6 часов.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 10.

Способ осуществляют аналогично примеру 9, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 11.

Способ осуществляют аналогично примеру 7, но обработку концентрата катализатора проводят при температуре 90°С и соотношении Т/Ж=1/3 в течение 2 часов.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 12.

Способ осуществляют аналогично примеру 11, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 13.

Способ осуществляют аналогично примеру 12, но к обработке подвергают концентрат катализатора, полученный в примере 2.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 14.

Способ осуществляют аналогично примеру 13, но к обработке подвергают концентрат катализатора, полученный в примере 3.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 15.

Способ осуществляют аналогично примеру 14, но к обработке подвергают концентрат катализатора, полученный в примере 4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 16.

Способ осуществляют аналогично примеру 15, но к обработке подвергают концентрат катализатора, полученный в примере 5.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 17.

Способ осуществляют аналогично примеру 16, но к обработке подвергают концентрат катализатора, полученный в примере 6.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 18.

Способ осуществляют аналогично примеру 17, но обработку концентрата катализатора проводят при соотношении Т/Ж=1/2,5 смесью кислот, содержащей 600 г/л HNO3 и 100 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 19.

Способ осуществляют аналогично примеру 18, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 20.

Способ осуществляют аналогично примеру 11, но обработку концентрата катализатора проводят в течение 1 часа.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 21.

Способ осуществляют аналогично примеру 20, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 22.

Способ осуществляют аналогично примеру 20, но обработку концентрата катализатора проводят в течение 3 часов при температуре 70°С. Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 23.

Способ осуществляют аналогично примеру 22, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 24.

Способ осуществляют аналогично примеру 22, но обработку концентрата катализатора проводят при температуре 50°С в течение 4 часов. Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 25.

Способ осуществляют аналогично примеру 24, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.


СПОСОБ РЕГЕНЕРАЦИИ МОЛИБДЕНСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ГИДРОКОНВЕРСИИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ
Источник поступления информации: Роспатент

Showing 81-90 of 141 items.
01.09.2018
№218.016.81e5

Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, а также в пищевой и полиграфической промышленности....
Тип: Изобретение
Номер охранного документа: 0002665484
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8248

Способ получения металлсодержащих наноразмерных дисперсий

Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей...
Тип: Изобретение
Номер охранного документа: 0002665575
Дата охранного документа: 31.08.2018
01.09.2018
№218.016.8269

Способ получения 2-винилнорборнана

Изобретение относится к способу синтеза 2-винилнорборнана, который может быть использован в различных отраслях народного хозяйства, в частности как мономер для получения сополимеров различного назначения, а также топлив, в частности ракетных и для дальней авиации. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002665488
Дата охранного документа: 30.08.2018
15.10.2018
№218.016.926d

Способы получения соли метакрилоилгуанидина, полимера и сополимера соли метакрилоилгуанидина и полученные полимер и сополимер

Изобретение относится к химии гуанидинсодержащих низкомолекулярных и высокомолекулярных соединений и может найти применение при получении препаратов, способных подавлять рост бактерий. Конкретно изобретение относится к способу получения соли метакрилоилгуанидина, который включает получение...
Тип: Изобретение
Номер охранного документа: 0002669563
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9271

Способ получения дивинила

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия KO, оксид магния MgO и γ-оксид алюминия γ-AlOхарактеризующийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002669561
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9273

Способ получения аддитивного полимера на основе дициклопентадиена (варианты)

Изобретение относится к синтезу аддитивных полимеров на основе дициклопентадиена (ДЦПД) и может быть использовано в различных отраслях промышленности. Описан способ получения аддитивных полимеров на основе ДЦПД, включающий смешение растворов трех компонентов каталитической системы в...
Тип: Изобретение
Номер охранного документа: 0002669562
Дата охранного документа: 12.10.2018
25.10.2018
№218.016.956e

Способ получения высокоплотного реактивного топлива (варианты)

Изобретение относится к двум вариантам способа получения высокоплотного реактивного топлива для сверхзвуковой авиации. Один из вариантов способа включает фракционирование тяжелой смолы пиролиза с выделением дистиллятной фракции с температурой кипения до 330°C, гидроочистку дистиллятной фракции...
Тип: Изобретение
Номер охранного документа: 0002670449
Дата охранного документа: 23.10.2018
03.11.2018
№218.016.9a26

Способ получения аддитивных полимеров на основе норборненов, содержащих двойную связь в заместителе

Изобретение относится к синтезу аддитивных полимеров на основе норборненов, содержащих двойную связь в заместителе, и может быть использовано в различных отраслях промышленности. Способ получения аддитивных полимеров на основе норборненов, содержащих двойную связь в заместителе, включает...
Тип: Изобретение
Номер охранного документа: 0002671564
Дата охранного документа: 02.11.2018
11.11.2018
№218.016.9c45

Способ получения катализатора, полученный этим способом катализатор и способ жидкофазного алкилирования изобутана бутиленами в его присутствии

Изобретение относится к технологии производства гетерогенных катализаторов. Предложен способ получения катализатора алкилирования изобутана бутиленами на основе цеолита, включающий ионный обмен путем обработки цеолита типа фожазит, гранулированного без связующего, при 70÷90°C с одновременным...
Тип: Изобретение
Номер охранного документа: 0002672063
Дата охранного документа: 09.11.2018
14.12.2018
№218.016.a759

Комбинированный катализатор и способ получения обогащённого триптаном экологически чистого высокооктанового бензина в его присутствии

Настоящее изобретение относится к получению высокооктанового бензина с низким содержанием ароматических соединений, но с высоким содержанием триптана (2,2,3-триметилбутана), и может применяться в области получения моторного топлива. Комбинированный катализатор получения обогащенного триптаном...
Тип: Изобретение
Номер охранного документа: 0002674769
Дата охранного документа: 13.12.2018
Showing 11-16 of 16 items.
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
10.05.2018
№218.016.4c27

Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных...
Тип: Изобретение
Номер охранного документа: 0002652122
Дата охранного документа: 25.04.2018
09.06.2018
№218.016.5f73

Способ гидрогенизационной переработки нефтяного шлама

Изобретение относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°С. Для подготовки нефтяного шлама осуществляют его контакт с...
Тип: Изобретение
Номер охранного документа: 0002656673
Дата охранного документа: 06.06.2018
14.11.2018
№218.016.9d13

Способ комплексной переработки остатка атмосферной дистилляции газового конденсата и установка для его осуществления

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть...
Тип: Изобретение
Номер охранного документа: 0002672254
Дата охранного документа: 13.11.2018
07.12.2018
№218.016.a458

Способ гидроконверсии остатка атмосферной дистилляции газового конденсата

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В...
Тип: Изобретение
Номер охранного документа: 0002674160
Дата охранного документа: 05.12.2018
19.12.2018
№218.016.a8ec

Способ получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения...
Тип: Изобретение
Номер охранного документа: 0002675249
Дата охранного документа: 18.12.2018
+ добавить свой РИД