×
20.03.2019
219.016.e92e

СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО РАСТВОРА ДИОКСИДА ПЛУТОНИЯ В МАТРИЦЕ ДИОКСИДА УРАНА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к ядерной энергетике и касается технологии получения смешанного диоксида урана и плутония (UO-PuO) для изготовления ядерного топлива. Способ получения твердого раствора диоксида плутония в матрице диоксида урана включает взаимодействие нитратных растворов урана и плутония с относительным содержанием их в растворе 95÷70 и 5÷30 мас.% соответственно с гидроксиламином, что приводит к восстановлению плутония до трехвалентного состояния и соосаждению урана и плутония в виде гомогенной смеси гидроксиламината уранила с гидроксидом плутония, и дальнейшее разложение полученного осадка на воздухе при 200-300°C. Изобретение позволяет получать твердый раствор диоксида плутония в матрице диоксида урана несложным способом при низких энергозатратах. 1 з.п. ф-лы, 1 ил., 2 табл., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к ядерной энергетике и касается технологии получения смешанного диоксида (UO2-PuO2) для изготовления ядерного (МОКС) топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800) атомных станций.

Для приготовления таблетированного МОКС топлива используют механическую смесь порошков UO2 и PuO2. Наиболее апробирован для этих целей MIMAS-процесс (Франция) [«Advanced MIMAS process». Auteurs: DUCROUX R.; COUTY Y.; LEROUX J.C. Editeur SFEN. Conférence: International nuclear conference on recycling, conditioning and disposal, Nice, FRA, 1998-10-25]. Он включает две основные стадии приготовления порошков:

- совместное размалывание порошкообразных оксидов урана и плутония с образованием концентрата с содержанием плутония в смеси до 25÷30 мас.%;

- сухое разбавление указанного концентрата диоксидом урана до конечного требуемого содержания плутония.

Основным недостатком MIMAS-процесса и других способов, основанных на смешивании сухих порошков оксидов урана и плутония, является сложность получения максимально однородных композиций, что приводит к уменьшению количества выгорающих фракций и неполному растворению отработавшего ядерного топлива при его повторной переработке. Этого недостатка можно избежать, если проводить совместное осаждение урана и плутония из раствора с дальнейшим переводом в смешанный диоксид урана и плутония.

Известен способ, согласно которому смеси окислов получают осаждением из растворов смесей диураната аммония и гидроокиси плутония с последующей фильтрацией, сушкой, прокаливанием и восстановлением водородом [Самойлов А.Г. Тепловыделяющие элементы ядерных реакторов. - М.: Энергоатомиздат, 1985, с.64].

К недостаткам данного способа можно отнести следующее:

- сложность процесса;

- необходимость использования высоких температур;

- использование водорода для восстановления.

В наиболее близком к предлагаемому способу техническом решении [RU 2282590], позволяющем получать смешанный диоксид урана и плутония с гомогенным распределением актинидов в гранулах порошка, выбранном в качестве прототипа, предлагаются следующие операции:

- предварительное восстановление урана до U(IV) путем введения в раствор восстановителя ионов гидрозония-[N2H5];

- стабилизации урана в состоянии окисления IV комплексообразователями - диэтилентетрааминопентауксусной или нитрилоуксусной кислотами, образующими комплексы также и с Pu(IV);

- совместное осаждение урана и плутония с применением специальной водно-этанольной среды, добавляя к раствору до 30 об.% этанола и созданием рН, равным 7.5, концентрированным аммиаком;

- сушка и прокаливание осадка при 150°C и более 650°C в инертной атмосфере.

К недостаткам способа по прототипу относятся:

- сложность процесса;

- необходимость предварительного восстановления урана, т.е. отдельной стадии процесса;

- применение специальной водно-этанольной среды для соосаждения;

- необходимость инертной атмосферы.

- необходимость использования высоких температур.

Технической задачей является отработка новых экономически целесообразных стадий в технологии производства МОКС-топлива, которые позволяли бы производить этот вид ядерного топлива с максимально гомогенным распределением PuO2 в матрице диоксида урана, то есть твердого раствора PuO2 в UO2.

Изобретение направлено на изыскание относительно несложного и менее энергоемкого способа, позволяющего получить твердый раствор диоксида плутония в матрице диоксида урана.

Технический результат достигается тем, что предложен способ получения твердого раствора диоксида плутония в матрице диоксида урана, заключающийся в том, что осуществляют взаимодействие нитратных растворов урана и плутония с относительным содержанием их в растворе 95÷70 и 5÷30 мас.% соответственно с гидроксиламином, приводящее к восстановлению Pu до трехвалентного состояния и соосаждению U и Pu в виде гомогенной смеси гидроксиламината уранила с гидроксидом плутония, затем проводят разложение полученного осадка на воздухе при 200÷300°C.

Целесообразно, что взаимодействие нитратных растворов с гидроксиламином проводят при мольном соотношении NH2OH:U>2.

Сущность заявляемого изобретения состоит в том, что в предлагаемом способе использование единственного реагента - гидроксиламина позволяет объединить восстановление Pu(VI) и/или Pu(IV) до Pu(III) и соосаждение урана и плутония в виде UO2(NH2O)2·nH2O и гидроксида плутония в одну стадию, чем достигается относительная простота.

Разложением образующихся осадков на воздухе и при относительно низких температурах достигается экономичность реализации способа получения твердого раствора диоксида плутония в матрице диоксида урана.

Важной особенностью предлагаемого способа является то, что использование гидроксиламина для осаждения урана и плутония из растворов приводит к соосаждению устойчивых на воздухе молекулярных комплексов урана(VI) UO2(NH2O)2·nH2O и гидроокиси плутония (III) Pu(ОН)3, плохо растворимых в воде и в обычных органических растворителях. Это позволяет использовать содержащие уран и плутоний нитратные растворы без их предварительной очистки от катионов.

Выбор относительного содержания урана и плутония в растворе обусловлен тем, что содержание плутония в МОКС-топливе может составлять величину от 5 до 30 мас.%.

Заявленный температурный интервал разложения определен исходя из того, что минимальная температура разложения обусловлена характером термолиза дигидроксиламинатных комплексов уранила, который заканчивается при ~200°C. Термическое разложение гидроксида Pu(IV) до его диоксида происходит при 300°C [Аналитическая химия плутония. М.С.Милюкова, Н.И.Гусев, И.Г.Сентюрин, И.С.Скляренко. Издательство «Наука», Москва, 1965 г., стр.88]. Проводить разложение при температурах выше 300°C нецелесообразно из-за того, что присутствие кислорода воздуха на стадии разложения полученных осадков начинает оказывать влияние на состав конечного продукта.

Соосаждение при мольном соотношении NH2OH:U≤2 нецелесообразно, так как не приводит к полному выделению урана из растворов.

Сущность заявляемого изобретения поясняется следующими прилагаемыми иллюстрациями и табличными данными.

Фиг. Спектры поглощения раствора U(VI) в процессе осаждения гидроксиламината U(VI) в присутствии плутония. Объем раствора 10 мл; 1 - исходного раствора, [U(VI)]=5.2 мг/мл, [Pu(VI)]=1.8 мг/мл, [HNO3]=0.1 моль/л; 2 - раствора после внесения 100 мг/мл NH2OH; 3, 4, 5, 6 - через 1, 15, 30 и 60 мин от начала процесса осаждения соответственно.

Табл.1. Оценка полноты осаждения U(VI) и Pu из азотнокислого раствора.

Табл.2. Межплоскостные расстояния d(Å) и относительные интенсивности (Int) эталонов UO2 и PuO2 и продукта соосаждения гидроксиламином U и Pu после прокаливания при 300°C на воздухе в течение 30 мин.

Изобретение реализуется следующим образом. К водному раствору нитратных солей уранила U(VI) и плутония Pu(VI) и/или Pu(IV) добавляют раствор гидроксиламина в воде, полученный нейтрализацией солей гидроксиламмония основаниями, при этом мольное соотношение NH2OH:U больше 2. Для полного осаждения урана и плутония необходимо поддерживать рН в интервале 6÷11, что собственно достигается использованием раствора гидроксиламина. Образующуюся суспензию перемешивают в течение 60 мин. В результате U и Pu практически количественно соосаждаются в виде гомогенного осадка (выход более 99%).

Раствор анализировали спектрофотометрически на остаточное содержание U и Pu, а осадок - на содержание U и определяли полноту их осаждения. В спектре раствора над осадком (кривая 6, Фиг.) отсутствовали полосы поглощения U и Pu.

Как видно из Табл. 1 полнота осаждения U и Pu в описанных условиях составляет 98÷99%. Выделенную гомогенную смесь дигидроксиламината уранила и гидроксида плутония после высушивания термически разлагают на воздухе при 300°C.

Таблица 1
Содержание U и Pu, мг (%)
В исходном растворе В маточном растворе В осадке
U Pu U Pu U Pu
52.0±0.1(100) 18.0±0.9(100) - 0.2±0.01 51±3(98) 17.8±0.9(99)
В скобках - содержание U и Pu в % от их исходного количества.

Результаты рентгенофазового анализа продукта разложения (Табл.2) позволяют заключить, что он представляет собой твердый раствор диоксидов плутония и урана. Ранее было показано [Куляко Ю.М., Трофимов Т.И., Самсонов М.Д., Мясоедов Б.Ф. Радиохимия. 2003. Т.45, N 6, с.86-87], что полное растворение образцов смесей диоксидов U и Pu в растворе аддукта ТБФ с HNO3 происходит только в случае образовании твердого раствора PuO2 в матрице UO2. При обработке механической смеси диоксидов U и Pu этого не происходит. Полученные образцы растворялись в аддукте ТБФ с HNO3 полностью, что служит дополнительным доказательством того, что при прокаливании на воздухе при 300°C продуктов соосаждения UO2(NH2O)2 и гидроксида плутония образуется твердый раствор PuO2 и UO2.

Таблица 2
Эталонные данные для UO2 Образец, полученный из UO2(NH2O)2 Эталонные данные для PuO2 Образец, полученный из смеси UO2(NH2O)2 с Pu(ОН)3
d(Å) Int., % d(Å) Int., % d(Å) Int., % d(Å) Int., %
3.156 100.0 3.162 100 3.115 100 3.135 100.0
2.733 34.7 2.714 32.7 2.698 37 2.716 50.0
1.932 40.9 1.922 43.9 1.908 48 1.920 70.0
1.648 35.0 1.642 33.7 1.627 45 1.636 70.0
1.578 7.6 1.577 8.2 1.558 10 1.570 10.0

Ниже приведены примеры реализации заявляемого изобретения. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1. Соосаждение урана(VI) и плутония(VI)

К водному азотнокислому раствору [HNO3]=0,1 моль/л; нитратов уранила и плутония с массовой концентрацией U(VI)=5,2 г/дм3 (0,022 моль/л) и Pu(VI)=1,8 г/дм3 (0,0075 моль/л) (относительное содержание U и Pu составляло 74,3 и 25,7 мас.% соответственно), добавляли раствор гидроксиламина до массовой концентрации NH2OH 26,3 г/дм3, что соответствует мольному соотношению NH2OH:U=5. Выделенный гомогенный осадок промывали спиртом, ацетоном, высушивали и разлагали на воздухе при температуре 300°C. Данные рентгенофазового анализа приведены в Таблице 2.

Пример 2. Соосаждение урана(VI) и плутония, присутствующего в растворе в смешано-валентной форме (60% Pu(IV) и 40% Pu(VI))

В 10 мл водного раствора [HNO3]=0.1 моль/л, содержащего U конц. 10,0 г/дм3 (0,42 моль/дм3) и суммарно Pu(IV)+Pu(VI) 0,8 г/дм3 (0,0033 моль/дм3) (относительные количества U и Pu в растворе составляли соответственно 93 и 7 мас.%), при перемешивании добавляли раствор гидроксиламина до массовой концентрации NH2OH 52,6 г/дм3.

Характер протекающих процессов и полнота осаждения урана и плутония по Примеру 2 полностью соответствовали результатам, описанным в Примере 1. Выделенный гомогенный осадок промывали спиртом, ацетоном, высушивали и разлагали на воздухе при температуре 300°C.

Заявляемый способ позволяет получать твердый раствор диоксида плутония в матрице диоксида урана относительно несложным способом за счет использования в качестве осадителя гидроксиламина, позволяющего провести соосаждение урана и плутония в одну стадию, а также при относительно низких энергозатратах за счет незначительных температур разложения осадков.

Источник поступления информации: Роспатент

Showing 1-8 of 8 items.
27.05.2013
№216.012.4429

Способ получения безводного комплекса тиоцианата иттрия

Изобретение относится к области координационной химии, конкретно к приготовлению исходных реагентов для синтезов, исключающих присутствие молекул воды. Способ получения безводного комплекса тиоцианата иттрия, характеризующегося химической формулой [Y(18-crown-6)(NCS)], либо...
Тип: Изобретение
Номер охранного документа: 0002483026
Дата охранного документа: 27.05.2013
20.02.2019
№219.016.c42a

Магнитный полупроводниковый материал

Изобретение относится к области неорганической химии, конкретно к легированным марганцем и цинком антимонидам индия, которые могут найти применение в спинтронике, где электронный спин используется в качестве активного элемента для хранения и передачи информации, формирования интегральных и...
Тип: Изобретение
Номер охранного документа: 0002465378
Дата охранного документа: 27.10.2012
08.03.2019
№219.016.d535

Индикаторное тестовое средство для определения микроколичеств веществ

Изобретение относится к устройствам для экспресс-анализа веществ с помощью иммобилизованных химических индикаторов на твердофазных носителях и может быть использовано в лабораторной практике и полевых условиях для экспрессного определения неорганических ионов и органических веществ в окружающей...
Тип: Изобретение
Номер охранного документа: 0002426114
Дата охранного документа: 10.08.2011
08.03.2019
№219.016.d56d

Способ получения кремнеземальдегидов

Изобретение относится к способам получения кремнеземальдегидов, которые могут быть использованы в качестве твердофазной матрицы для иммобилизации ферментов и хромогенных реагентов. Техническая задача изобретения - разработка универсального и простого способа получения кремнеземальдегидов с...
Тип: Изобретение
Номер охранного документа: 0002400468
Дата охранного документа: 27.09.2010
15.03.2019
№219.016.e139

Способ получения углеродных нанотрубок

Изобретение относится к химической промышленности и нанотехнологии. Получают углеродные нанотрубки путем приведения в контакт смеси метана и водорода с катализатором. Процесс проводят при повышенной температуре и времени контактирования катализатора и смеси указанных газов 10-60 мин. В качестве...
Тип: Изобретение
Номер охранного документа: 0002431600
Дата охранного документа: 20.10.2011
29.03.2019
№219.016.f760

Индикаторное средство для определения цимантрена в бензине

Изобретение относится к аналитической химии, в частности к средствам анализа небиологических материалов химическими способами, преимущественно с помощью химических индикаторов, и может быть использовано для экспрессного определения цимантрена в бензине, куда его добавляют для повышения...
Тип: Изобретение
Номер охранного документа: 0002446395
Дата охранного документа: 27.03.2012
10.04.2019
№219.017.090c

Способ получения полиметилметакрилата

Настоящее изобретение относится к способу получения полиметилметакрилата. Описан способ получения полиметилметакрилата радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила или азодиизобутиронитрил,...
Тип: Изобретение
Номер охранного документа: 0002446178
Дата охранного документа: 27.03.2012
09.05.2019
№219.017.4f95

Горизонтальный импульсно-циклический массообменный аппарат

Изобретение относится к области устройств для процессов разделения веществ в системах жидкость-жидкость и газ-жидкость методами сорбции, экстракции и хроматографии и может быть использовано в химической, микробиологической, фармацевтической и других отраслях промышленности для извлечения,...
Тип: Изобретение
Номер охранного документа: 0002438751
Дата охранного документа: 10.01.2012
Showing 1-10 of 12 items.
20.05.2014
№216.012.c52c

Способ кондиционирования жидких радиоактивных отходов

Изобретение относится к проблемам охраны окружающей среды, в частности к процессам кондиционирования методом цементирования жидких радиоактивных отходов (ЖРО), включая борсодержащие ЖРО. Кондиционирования жидких радиоактивных отходов проводят цементированием с использованием электромагнитной...
Тип: Изобретение
Номер охранного документа: 0002516235
Дата охранного документа: 20.05.2014
10.07.2014
№216.012.dcb0

Способ отверждения жидких высокоактивных отходов

Изобретение относится к способу отверждения жидких высокоактивных отходов с целью переведения их в компактный материал, пригодный для долговременного и безопасного хранения. Способ заключается в переведении отходов в гелеобразное состояние и характеризуется тем, что в растворы высокоактивных...
Тип: Изобретение
Номер охранного документа: 0002522274
Дата охранного документа: 10.07.2014
27.09.2014
№216.012.f8ab

Состав для отверждения жидких радиоактивных отходов

Изобретение относится к области кондиционирования жидких радиоактивных отходов методом цементирования, а именно к составу для отверждения жидких радиоактивных отходов, состоящему из портландцемента и природной минеральной добавки. При этом в качестве природной минеральной добавки используют...
Тип: Изобретение
Номер охранного документа: 0002529496
Дата охранного документа: 27.09.2014
20.02.2015
№216.013.2a6c

Способ получения порошка диоксида урана

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения порошка диоксида урана заключается в нагревании смеси раствора уранилнитрата и...
Тип: Изобретение
Номер охранного документа: 0002542317
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.5a2d

Способ получения твердого раствора диоксида плутония в матрице диоксида урана

Изобретение относится к радиохимической промышленности и ядерной энергетике, направлено на получение смешанного диоксида (U,Pu)O и может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800)...
Тип: Изобретение
Номер охранного документа: 0002554626
Дата охранного документа: 27.06.2015
20.08.2015
№216.013.6f85

Способ переработки отработавшего ядерного топлива

Изобретение относится к средствам переработки отработавшего ядерного топлива (ОЯТ). В заявленном способе разрушенные при рубке ТВЭЛов таблетки оксидного отработавшего ядерного топлива подвергают растворению при нагревании в водном растворе нитрата железа(III) при мольном отношении железа к...
Тип: Изобретение
Номер охранного документа: 0002560119
Дата охранного документа: 20.08.2015
13.01.2017
№217.015.77b5

Способ получения твёрдого раствора диоксида плутония в матрице диоксида урана

Изобретение относится к радиохимической промышленности и ядерной энергетике и направлено на получение смешанного диоксида (U,Pu)O, которое может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600,...
Тип: Изобретение
Номер охранного документа: 0002598943
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8774

Способ получения оксидов урана

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения оксидов урана под действием микроволнового излучения осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002603359
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8ff0

Способ контроля оксидов урана uo и uo на примеси

Изобретение относится к области изготовления ядерного оксидного уранового топлива, может быть использовано для определения качества однокомпонентных оксидов урана UO и UO в заводских условиях. Способ контроля оксидов урана UO и UO на примеси состоит в том, что на одну или несколько навесок...
Тип: Изобретение
Номер охранного документа: 0002605456
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.cb92

Двудечная плавающая крыша вертикального стального резервуара для нефти и нефтепродуктов

Изобретение относится к области хранения нефти, в частности к плавающим крышам резервуаров для хранения нефти и/или нефтепродуктов. Двудечная плавающая крыша нефтяного резервуара включает в себя расположенные концентрически сегменты крыши, содержащие соединенные между собой отсеки, при этом...
Тип: Изобретение
Номер охранного документа: 0002620243
Дата охранного документа: 23.05.2017
+ добавить свой РИД