×
20.08.2015
216.013.6f85

СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к средствам переработки отработавшего ядерного топлива (ОЯТ). В заявленном способе разрушенные при рубке ТВЭЛов таблетки оксидного отработавшего ядерного топлива подвергают растворению при нагревании в водном растворе нитрата железа(III) при мольном отношении железа к урану в топливе, равном 1,5-2,0:1, образовавшийся осадок основной соли железа с нерастворенными продуктами деления ядерного топлива отделяют фильтрованием, а из полученного слабокислого раствора осаждают пероксид уранила путем последовательной подачи в раствор при перемешивании динатриевой соли этилендиаминтетрауксусной кислоты. Далее полученную гетерогенную систему выдерживают не менее 30 минут и после отделения и промывки кислотой и водой осадок пероксида уранила подвергают твердофазному восстановлению при нагревании путем обработки его щелочным раствором гидразингидрата в воде при 2-3-кратном мольном избытке гидразина по отношению к урану, с последующим отделением полученного гидратированного диоксида урана UO·2HO, промыванием его раствором HNO с концентрацией 0,1 моль/л, водой и сушкой. При этом осадок основных солей железа с продуктами деления, маточный раствор стадии осаждения пероксидов с остатками продуктов деления, отходы щелочных и промывных растворов направляют в сборник отходов для их последующей переработки. Техническим результатом является повышение экологической безопасности и уменьшение количества отходов. 8 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к области ядерной энергетики, в частности к переработке отработавшего ядерного топлива (ОЯТ), и может быть использовано в технологической схеме переработки, в том числе МОКС-топлива, так как извлечение из ОЯТ оставшихся количеств U и Pu для приготовления нового топлива является основной задачей замкнутого ядерного топливного цикл, на который ориентирована атомная энергетика страны. В настоящее время актуальным является создание и оптимизация новых, малоотходных, экологически безопасных и экономически целесообразных технологий, которые бы обеспечили переработку ОЯТ как действующих, так и реакторов 3 и 4 поколения на быстрых нейтронах, работающих на смешанном оксидном уран-плутониевом топливе (МОКС-топливо).

Известны способы переработки ОЯТ с помощью фтора или фторсодержащих химических соединений. Образующиеся при этом летучие фтористые соединения компонентов ядерного топлива переходят в газовую фазу и отгоняются. При фторировании диоксид урана превращается в UF6, который сравнительно легко испаряется в отличие от плутония, обладающего более низкой летучестью. Обычно при переработке ОЯТ этим способом ОЯТ фторируют, извлекая из него не весь содержащийся в нем уран, а только его необходимое количество, отделяя таким образом его от остальной части перерабатываемого топлива. После этого меняют режим испарения и извлекают из остатка ОЯТ также в виде паров и некоторое количество содержащегося в нем плутония.

[патент РФ №2230130, С22В 60/02, опубл. 19.01.1976]

Недостатком указанной технологии является то, что в этом способе переработки ОЯТ используют газообразные, агрессивные и токсичные в экологическом отношении химические соединения. Таким образом, технология является экологически небезопасной.

Одним из близких по сути к заявляемому способу является известный метод, заявленный в пат. РФ №2403634, (G21C 19/44, опубл. 10.11.2010), по которому регенерация ОЯТ включает стадию растворения топлива в растворе азотной кислоты, стадию электролитического регулирования валентности, с восстановлением Pu до трехвалентного состояния и сохранением пятивалентного состояния Np, стадию экстракции шестивалентного урана экстрагирующим агентом в органическом растворителе; стадию осаждения щавелевой кислотой, приводящую к совместному осаждению второстепенных актинидов и продуктов деления, оставшихся в растворе азотной кислоты, в виде оксалатного осадка; стадию хлорирования с превращением оксалатного осадка в хлориды путем добавления хлористоводородной кислоты к осадку оксалатов; стадию дегидратации с получением синтетических безводных хлоридов путем дегидратации хлоридов в токе газообразного аргона; и стадию электролиза в расплаве солей с растворением безводных хлоридов в расплавленной соли и накоплением урана, плутония и второстепенных актинидов на катоде за счет электролиза.

Недостатком этого способа переработки ОЯТ является его многостадийность и сложность в осуществлении, так как включает электрохимические стадии, которые энергозатратны, требуют специального оборудования и проведения процесса при высокой температуре, в особенности при работе с расплавами солей.

Известен также способ, согласно которому ОЯТ перерабатывают чисто пирохимически с применением солевого расплава урана или плутония, после чего выделенные компоненты ядерного топлива используют повторно. При пирохимической переработке ОЯТ применяют его индукционный нагрев в тигле и его охлаждение путем подвода хладагента к тиглю.

[патент РФ №2226725, G21C 19/46, опубл. 19.01.2009]

Пирометаллургические технологии не приводят к образованию больших количеств жидких радиоактивных отходов (ЖРО), а также обеспечивают компактное размещение оборудования, однако они являются очень энергоемкими и технологически сложны.

Также к способам переработки ОЯТ относятся:

(1) способ, включающий окисление урана газообразным хлором, оксидами азота, диоксидом серы в среде диполярного апротонного растворителя или его смеси с хлорсодержащим соединением [патент РФ №2238600, G21F 9/28, опубл. 27.04.2004];

(2) способ растворения материалов, содержащих металлический уран, включающий окисление металлического урана смесью трибутилфосфат-керосин, содержащей азотную кислоту [патент США №3288568, G21F 9/28, опубл. 10.12.1966];

(3) способ растворения урана, включающий окисление металлического урана раствором брома в этилацетате при нагревании [Larsen R.P. Dissolution of uranium metal and its alloys // Analit. chem. V. 31. Issue 4. P. 545-549].

К недостаткам указанных способов относятся повышенная пожароопасность систем и ограниченность сферы их использования.

Широко распространенной технологией переработки ОЯТ является Пурекс-процесс (взятый нами за прототип), при котором ОЯТ, содержащее уран, плутоний и продукты деления (ПД) ядерного топлива, растворяют в сильнокислых растворах азотной кислоты при нагревании до 60-80°C. После этого актиниды извлекают из азотнокислого раствора органической фазой, содержащей трибутилфосфат в керосине или другом органическом растворителе. Далее следуют технологические стадии, связанные с разделением урана и плутония и их очисткой от ПД. Пурекс-процесс описан, например, в монографии «The Chemistry of the Actinide and Transactinide Elements», 3rd Edition, Edited by Lester R. Morss, Norman M. Edelstein and Jean Fuger. 2006, Springer, pp. 841-844.

Указанный процесс переработки ОЯТ является многостадийным и основан на применении экологически опасных сред:

(1) азотной кислоты (6-8 моль/л) как растворителя ОЯТ при 60-80°C и образующей при протекании реакций с ее участием агрессивные газообразные продукты;

(2) так как кислотность раствора после завершения растворения примерно 3,5 моль/л по азотной кислоте, то это с неизбежностью приводит к применению экстракции для извлечения U(Pu) органическими растворителями;

(3) использование органических растворителей, токсичных, горючих, легко воспламеняющихся, взрывоопасных и зачастую неустойчивых к радиационному излучению приводит к образованию вместе с водными ЖРО больших объемом отходов (до 7-12 тонн на 1 тонну переработанного ОЯТ).

Задачей настоящего изобретения является создание инновационной, малоотходной, экологически безопасной и экономически целесообразной технологии переработки ОЯТ.

Поставленная задача решается использованием нового способа переработки ОЯТ, характеризующегося тем, что разрушенные при рубке ТВЭЛов таблетки оксидного отработавшего ядерного топлива подвергают растворению при нагревании в водном растворе нитрата железа(III) при мольном отношении железа к урану в топливе, равном 1,5-2,0:1, образовавшийся осадок основной соли железа с нерастворенными продуктами деления ядерного топлива отделяют фильтрованием, а из полученного слабокислого раствора, содержащего преимущественно уранилнитрат, осаждают пероксид уранила путем последовательной подачи в раствор при перемешивании динатриевой соли этилендиаминтетрауксусной кислоты в мольном избытке по отношению к урану, равном 10%, и 30% раствора перекиси водорода, взятой в 1,5-2-кратном мольном избытке по отношению к урану, при температуре не выше 20°C, полученную гетерогенную систему выдерживают не менее 30 минут и после отделения и промывки кислотой и водой осадок пероксида уранила подвергают твердофазному восстановлению при нагревании путем обработки его щелочным раствором гидразингидрата в воде при 2-3-кратном мольном избытке гидразина по отношению к урану, с последующим отделением полученного гидратированного диоксида урана UO2·2H2O, промыванием его раствором HNO3 с концентрацией 0,1 моль/л, водой и сушкой, при этом осадок основных солей железа с продуктами деления, маточный раствор стадии осаждения пероксидов с остатками продуктов деления, отходы щелочных и промывных растворов направляют в сборник отходов для их последующей переработки.

Обычно растворение ОЯТ ведут в интервале температуры 60-90°C не более 5-10 часов с использованием водного раствора нитрата железа(III) с pH от 0,2 до 1,0.

Выделенный пероксид уранила целесообразно промывать раствором HNO3 с концентрацией 0,05 моль/л, а его твердофазное восстановление вести 10%-ным водным раствором гидразингидрата при pH 10 при 60-90°C в течение 10-15 часов.

Преимущественно сушку гидратированного диоксида урана ведут при 60-90°C.

Возможно вести процесс в двух последовательно соединенных бифункциональных аппаратах, конструкция которых предусматривает наличие узла фильтрации и возможности изменения на 180° пространственной ориентации аппаратов, первый из которых используют для растворения и сбора отходов процесса, а второй - для осаждения пероксида урана, его твердофазного восстановления и выделения целевого продукта.

Технический результат способа достигается тем, что на всех стадиях переработки ОЯТ компоненты топлива (UO2 с содержанием до 5 масс.% 239Pu) - U(Pu), растворяющий (нитрат железа), осаждающий (пероксид водорода) и восстанавливающий реагенты находятся в разных фазах, удобных для их дальнейшего разделения. На стадии растворения уран переходит в раствор, а основная масса растворяющего реагента выделяется в виде твердого соединения. На стадии осаждения пероксида и его твердофазного восстановительного превращения в диоксид урана целевой продукт находится в твердом виде и легко отделяется от жидкой фазы.

Предлагаемый способ осуществляется следующим образом.

Разрушенные при рубке ТВЭЛов таблетки диоксида урана (UO2 с содержанием до 5 масс.% 239Pu) погружают в воду, содержащую нитрат железа(III), и растворяют при нагревании до 60-90°C. Полученный раствор, содержащий U(Pu), и пульпу основной соли железа, образовавшуюся при растворении, разделяют. После удаления раствора с U(Pu) осадок основной соли железа - соли железа с ПД - Мо, Tc и Ru (~95%) и частично Nd, Zr и Pd (~50%) - остается в сборнике отходов.

К отделенному раствору с U(Pu) добавляют перекись водорода и при комнатной температуре проводят осаждение пероксида уранила, с которым соосаждается и плутоний, коэффициент очистки целевого продукта от ПД около 1000. Завершив осаждение, отделяют осадок от слабокислого маточного раствора, который с оставшимся в нем ПД и нитратом Fe(III) направляют в сборник отходов с осадком основной соли. В сборник отходов также направляют раствор от промывки осадка смешанного пероксида. Далее проводят твердофазное восстановление образованного пероксида после введения гидразингидрата при перемешивании током азота при 80-90°C и получают гидратированный диоксид U(Pu). Отделенный щелочной раствор транспортируют в сборник отходов. Осадок диоксида промывается небольшим объемом 0,1М HNO3, затем дистиллированной водой, которые также направляются в сборник отходов. Полученный целевой продукт сушат в потоке нагретого азота при 60-90°C и выгружают из аппарата.

Слабокислые и слабощелочные водные растворы-отходы, собирающиеся по мере переработки ОЯТ в сборнике отходов, удаляют их упариванием, а находящееся в них железо осаждается в форме гидроксида совместно с катионами 2-, 3- и 4-валентных ПД. Твердый продукт из соединений железа с ПД, включенными в их фазу, является единственным отходом в заявляемом способе переработки ОЯТ. Упариваемую воду можно конденсировать и вернуть при необходимости в процесс.

Переработка ОЯТ может осуществляться в бифункциональном специальном аппарате (аппаратах), конструкция которых предусматривает наличие узла фильтрации (УФ), рубашки, способной обеспечить подачу теплоносителя и проведение процесса растворения при температуре ≤90°C в реакционной смеси, и возможности изменять на 180° пространственную ориентацию аппарата.

Процесс ведут, как правило, в двух последовательно соединенных бифункциональных аппаратах следующим образом.

Когда узел фильтрации устройства находится в верхней части, аппарат предназначен для растворения ОЯТ. Полученный раствор, содержащий U(Pu), и пульпу основной соли железа, образовавшуюся при растворении ОЯТ, разделяют. Для этого устройство переворачивают на 180°, при этом УФ находится в донной части. Фильтрацию осуществляют, подавая избыточное давление во внутренний объем аппарата, либо подключая его к вакуумной линии. После фильтрации и удаления раствора с U(Pu) устройство с осадком соли железа и ПД (Мо, Tc и Ru (~95%) и частично Nd, Zr и Pd (~50%)) поворотом на 180° переводится в положение, когда УФ расположен в верхней части, и далее аппарат выполняет функцию сборника растворов-отходов.

Фильтрованный раствор с U(Pu) подается во второй аппарат той же конструкции в позиции, когда УФ расположен в верхней части устройства. К раствору добавляют перекись водорода и проводят осаждение пероксида U(Pu) при комнатной температуре. Завершив осаждение, устройство переворачивают на 180° и проводят фильтрационное разделение через донную часть аппарата. Полученный пероксид остается на фильтре в аппарате, а маточный раствор с растворенными ПД (фактор очистки около 1000) и остаточным нитратом Fe(III) направляется в первый аппарат с осадком основной соли, ставший сборником отходов.

Устройство переворачивают в положение с УФ в верхней части и осадок пероксида с фильтра в аппарате смывают небольшим количеством воды, содержащей гидразингидрат, с образованием пульпы, в которой пероксид твердофазным восстановлением гидразином переводят в гидратированный диоксид U(Pu) при 80-90°C.

Завершив твердофазное восстановление и получив гидратированный диоксид U(Pu), переводят аппарат в положение, при котором он выполняет функцию фильтрации. Отделенный щелочной раствор направляется в первый аппарат с осадком основной соли, ставший сборником отходов. Осадок диоксида промывается небольшим объемом 0,1М HNO3, затем дистиллированной водой, которые также направляются в сборник отходов. Устройство с осадком гидратированного U(Pu)O2·nH2O поворотом на 180° переводится в положения, когда УФ расположен в верхней части. Далее в аппарате проводится сушка целевого продукта при 60-90°C подачей потока азота, и по завершении сушки препарат выгружается из аппарата.

Нижеприведенные примеры иллюстрируют эффективность использования водных слабокислых растворов нитрата (хлорида) Fe(III) для растворения оксидного ОЯТ с одновременным отделением U(Pu) на этой стадии от части ПД с последующим их отделением от остатков ПД при пероксидном осаждении U(Pu) из полученного раствора. Дальнейшее твердофазное восстановительное превращение пероксида сначала в гидратированный, а потом в кристаллический диоксид U(Pu) повышает эффективность заявляемого способа.

Пример

Порошкообразный образец диоксида урана (238+235UO2) предварительно прокаливали при 850°C в атмосфере аргона с 20% содержанием водорода в течение 8 часов.

Таблетки или порошок керамического ядерного топлива, содержащего уран и 5 масс.% плутония, массой 132 г погружают в водный раствор нитрата железа(III) объемом 1 л с pH не менее 0,2 при концентрации Fe(NO3)3 в воде от 50 до 300 г/л и растворяют при нагревании до 60-90°C при мольном отношении Fe(III) к топливу как 1,5 к 1.

Контролируют величину pH и содержание урана в растворе и продолжают растворение таблеток до тех пор, пока в последовательно отобранных пробах содержание урана не изменяется. В результате процесса растворения получают раствор, содержащий преимущественно уранилнитрат и имеющий величину pH≤2, и осадок основной соли железа. Требуется не более 5-7 часов для количественного растворения взятых образцов.

Полученный нитратный раствор отделяют от пульпы фильтрацией, например, с использованием металлокерамического фильтра. Оставшийся на фильтре осадок основной соли железа промывают водой и направляют в сборник отходов вместе с промывными водами.

К слабокислому раствору отделенного уранилнитрата при температуре ≤20°C добавляют 60 мл 10% раствора двузамещенной натриевой соли ЭДТА (Трилон-Б), перемешивают 10 минут. В растворе выпадает комплексное соединение уранила белого цвета.

При перемешивании к образовавшейся суспензии добавляют порциями по 50 мл с интервалом через 1-1,5 мин 300 мл 30%-ного раствора перекиси водорода (Н2О2) также при температуре ≤20°C для получения пероксида уранила, с которым также количественно соосаждается плутоний.

Перемешивание проводят далее не менее 20-30 минут для лучшего созревания осадка пероксида уранила, имеющего светло-желтый цвет.

Отделяют фильтрацией осадок пероксида уранила от маточного раствора, который направляют в сборник отходов. Осадок промывают 0,25 л 0,05М HNO3, промывной раствор направляют в сборник отходов.

Промытый осадок пероксида уранила сначала переводят 10%-ным водным щелочным раствором гидразингидрата в воде в суспензию, раствор при этом имеет величину pH~10.

При перемешивании и нагревании суспензии до 80°C пероксид уранила переходит в гидратированный диоксид UO2·H2O при твердофазном восстановлении U(VI) гидразином до U(IV).

Контроль за процессом восстановления U(VI) до U(IV) осуществляют периодическим отбором проб суспензии, содержащих не более 50 мг твердой взвеси. Осадок растворяют в смеси 4М HCl с 0,1М HF, записывают первый спектр раствора. Затем раствор обрабатывают амальгамой и записывают второй спектр этого раствора. При этом весь уран, находящийся в растворе, должен быть восстановлен полностью до U(IV). Таким образом, если первый и второй спектры совпадают, то процесс твердофазного восстановления закончен. В противном случае процедуру превращения пероксида в диоксид урана продолжают. Процесс завершается за 10-15 часов.

Полученный гидратированный диоксид урана отделяют фильтрацией от щелочного раствора (объем ~0,6 л), раствор направляют в сборник отходов. Осадок гидратированного диоксида урана промывают на фильтре 0,25 л 0,1М HNO3 для нейтрализации щелочи, оставшейся в объеме осадка, затем таким же объемом воды, чтобы удалить следы кислоты из объема осадка с контролем pH последней промывной воды. Промывные растворы направляют в сборник отходов.

Результаты анализов маточного раствора и пероксида урана указывают, что степень осаждения урана составляет не менее 99,5%, а содержание железа в выделенном пероксиде не превышает 0,02 масс.%.

Промытый от следов щелочи осадок пероксида урана высушивают, например, нагретым до 60-90°C потоком азота и выгружают из аппарата в виде порошка.

В результате получают не менее 131,3 г диоксида урана.

В собранных в сборнике отходов водных растворах со слабощелочной реакцией выделяются остатки железа в форме аморфного гидроксида. Гетерогенную суспензию упаривают, при этом достигается практически полное удаления воды. Влажный или сухой твердый продукт, представляющий собой в основном соединения железа, является единственным отходом в заявляемом способе переработки керамического оксидного топлива с использованием растворов нитрата железа(III).

Заявляемый способ позволяет упростить переработку ОЯТ и исключить образование ЖРО в сравнении с Пурекс-процессом.

Новыми существенными и отличительными признаками заявляемого способа (в сравнении с прототипом) являются:

- использование водных слабокислых растворов нитрата Fe(III) для растворения оксидного ОЯТ, которые ранее для этого не применялись. Без существенного ухудшения растворяющей способности нитрат железа может быть заменен на хлорид Fe(III);

- в отличие от прототипа отсутствует специальная стадия с введением в систему двухвалентного сульфата железа для восстановления Pu(IV) до Pu(III). В заявляемом способе при растворении оксидного уранового и смешанного топлива уран(IV) окисляется Fe(III) до урана(VI), а образующиеся при этом катионы Fe(II) восстанавливают Pu(IV) до Pu(III), и актиниды количественно переходят в раствор в виде их нитратов;

- в заявляемом способе не требуется вводить кислоту для растворения ОЯТ, так как используемая среда имеет кислотность, обусловленную гидролизом нитрата железа(III), и в зависимости от его концентрации от 50 до 300 г/л величина pH в диапазоне от 1 до 0,3;

- в заявляемом способе после растворения топлива кислотность получаемых растворов будет ≤0,1 М (по урану 100-300 г/л), в то время как в Пурекс-процессе образуются сильнокислые ~3М растворы HNO3, что с неизбежностью приводит к экстракции и образованию большого количества органических и водных ЖРО;

- низкая кислотность после растворения ОЯТ по заявляемому способу позволяет отказаться от экстракционного извлечения компонентов топлива органическими растворами, упростить организацию процесса переработки ОЯТ и устранить ЖРО в сравнении с технологией Пурекс-процесса;

- в заявляемом способе процесс растворения топлива завершается получением раствора, содержащего U(Pu), и осадка основной соли железа, в количестве ~50% от исходного содержания нитрата железа(III);

- продукты деления, такие как Мо, Tc и Ru (~95%) и частично от Nd, Zr и Pd (~50%), отделяются от урана уже на стадии растворения ОЯТ и концентрируются в образовавшемся осадке основной соли железа. Это также является преимуществом заявляемого способа растворения ОЯТ в сравнении с Пурекс-процессом;

- в применяемых слабокислых растворах не растворяются конструкционные материалы оболочек ТВЭЛов и фазы, образовавшиеся из ПД в матрице ОЯТ в форме светлых металлических (Ru, Rh, Мо, Tc, Nb) и серых керамических включений (Rb, Cs, Ba, Zr, Мо). Поэтому слабокислые будут менее загрязнены компонентами растворенных оболочек и ПД, в отличие от 6-8 М HNO3 в Пурекс-процессе;

- кислотность ≤0,1 М получаемых растворов с концентрацией по урану 100-300 г/л является оптимальной для осаждения пероксидов урана(VI) и плутония(IV). Перекиси водорода отдано предпочтение, так как она переводит уран в состояние U(VI), что требуется для количественного осаждения;

- при осаждении пероксида U(Pu) из раствора достигается количественное отделение U практически от всех ПД и остатков железа, находящихся в растворе (коэффициент очистки ~1000);

- новым и оригинальным решением в заявляемом способе является проведение процесса твердофазного восстановления в водной суспензии пероксида U(Pu) гидразингидратом при 90°C до гидратированного U(Pu)O2×nH2O с последующей сушкой целевого продукта при 60-90°C и выгрузкой из аппарата,

- слабокислые и слабощелочные водные растворы отходы, накапливаемые по мере переработки ОЯТ в сборнике отходов, удаляются при упаривании, а находящееся в них железо осаждается в форме гидроксида совместно с катионами 2-, 3- и 4-валентных ПД. Твердый продукт из соединений железа с включенными в их фазу ПД является единственным отходом в заявляемом способе переработки оксидного ОЯТ.

Источник поступления информации: Роспатент

Showing 1-10 of 702 items.
27.03.2013
№216.012.3176

Устройство подачи пробы в реактор

Изобретение относится к аналитической химии и приборостроению, может быть использовано для различных анализов жидкой пробы и направлено на уменьшение времени анализа и увеличение воспроизводимости результатов анализа за счет автоматизации забора жидкой пробы перед ее перемещением в реактор, а...
Тип: Изобретение
Номер охранного документа: 0002478200
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3b44

Способ определения сплошности покрытия изделия

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002480733
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41ed

Интерферометр

Изобретение может быть использовано для контроля качества афокальных систем, в том числе крупногабаритных, а именно: плоских зеркал, светоделителей, плоскопараллельных пластин, клиньев, телескопических систем с увеличением, близким к единичному. Интерферометр содержит формирователь...
Тип: Изобретение
Номер охранного документа: 0002482447
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49ed

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным...
Тип: Изобретение
Номер охранного документа: 0002484505
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.51b2

Способ биогеохимического мониторинга загрязнения среды кадмием

Изобретение относится к исследованиям в области охраны окружающей среды, а именно к способам биогеохимического мониторинга загрязнения объектов окружающей среды кадмием. Способ может быть использован для экологического картирования, выявления неблагоприятных участков исследуемых регионов и...
Тип: Изобретение
Номер охранного документа: 0002486507
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.5a93

Люминесцентный фотометр

Изобретение предназначено для определения концентрации урана в природных водах, в водах хозяйственно-бытового и технического назначения. Фотометр содержит канал возбуждения, включающий оптически связанные источник спектрального излучения, оптический фильтр и средство формирования пучка...
Тип: Изобретение
Номер охранного документа: 0002488808
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5ab8

Система параметрической гидролокации с функцией получения акустического изображения целей

Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного...
Тип: Изобретение
Номер охранного документа: 0002488845
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.686e

Затвор люка камеры

Изобретение относится к машиностроению и может быть использовано при проектировании крупногабаритных камер высокого давления для испытания в них изделий. Затвор люка камеры содержит герметично установленную на люке камеры крышку, имеющую глубокую заходную часть и связанную с размещенным извне...
Тип: Изобретение
Номер охранного документа: 0002492381
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.688d

Складываемая аэродинамическая поверхность

Изобретение относится к области ракетной техники и, в частности к конструкциям складываемых аэродинамических поверхностей, находящихся под воздействием сильных аэродинамических возмущений. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную...
Тип: Изобретение
Номер охранного документа: 0002492412
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6bfc

Способ электрохимического осаждения актинидов

Изобретение относится к области гальваностегии, в частности к электрохимическому осаждению плутония, америция и кюрия из органической среды, и может быть использовано для переработки облученного ядерного топлива, изготовления изотопных источников актинидов, а также для радиационного мониторинга...
Тип: Изобретение
Номер охранного документа: 0002493295
Дата охранного документа: 20.09.2013
Showing 1-10 of 278 items.
27.03.2013
№216.012.3176

Устройство подачи пробы в реактор

Изобретение относится к аналитической химии и приборостроению, может быть использовано для различных анализов жидкой пробы и направлено на уменьшение времени анализа и увеличение воспроизводимости результатов анализа за счет автоматизации забора жидкой пробы перед ее перемещением в реактор, а...
Тип: Изобретение
Номер охранного документа: 0002478200
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3b44

Способ определения сплошности покрытия изделия

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002480733
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41ed

Интерферометр

Изобретение может быть использовано для контроля качества афокальных систем, в том числе крупногабаритных, а именно: плоских зеркал, светоделителей, плоскопараллельных пластин, клиньев, телескопических систем с увеличением, близким к единичному. Интерферометр содержит формирователь...
Тип: Изобретение
Номер охранного документа: 0002482447
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49ed

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным...
Тип: Изобретение
Номер охранного документа: 0002484505
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.51b2

Способ биогеохимического мониторинга загрязнения среды кадмием

Изобретение относится к исследованиям в области охраны окружающей среды, а именно к способам биогеохимического мониторинга загрязнения объектов окружающей среды кадмием. Способ может быть использован для экологического картирования, выявления неблагоприятных участков исследуемых регионов и...
Тип: Изобретение
Номер охранного документа: 0002486507
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.5a93

Люминесцентный фотометр

Изобретение предназначено для определения концентрации урана в природных водах, в водах хозяйственно-бытового и технического назначения. Фотометр содержит канал возбуждения, включающий оптически связанные источник спектрального излучения, оптический фильтр и средство формирования пучка...
Тип: Изобретение
Номер охранного документа: 0002488808
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5ab8

Система параметрической гидролокации с функцией получения акустического изображения целей

Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного...
Тип: Изобретение
Номер охранного документа: 0002488845
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.686e

Затвор люка камеры

Изобретение относится к машиностроению и может быть использовано при проектировании крупногабаритных камер высокого давления для испытания в них изделий. Затвор люка камеры содержит герметично установленную на люке камеры крышку, имеющую глубокую заходную часть и связанную с размещенным извне...
Тип: Изобретение
Номер охранного документа: 0002492381
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.688d

Складываемая аэродинамическая поверхность

Изобретение относится к области ракетной техники и, в частности к конструкциям складываемых аэродинамических поверхностей, находящихся под воздействием сильных аэродинамических возмущений. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную...
Тип: Изобретение
Номер охранного документа: 0002492412
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6bfc

Способ электрохимического осаждения актинидов

Изобретение относится к области гальваностегии, в частности к электрохимическому осаждению плутония, америция и кюрия из органической среды, и может быть использовано для переработки облученного ядерного топлива, изготовления изотопных источников актинидов, а также для радиационного мониторинга...
Тип: Изобретение
Номер охранного документа: 0002493295
Дата охранного документа: 20.09.2013
+ добавить свой РИД