×
14.03.2019
219.016.df6d

Результат интеллектуальной деятельности: ДУГОВОЙ СПОСОБ ПОЛУЧЕНИЯ ГРАФЕНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью. Графитовый стержень заполняют графитовым порошком с добавкой порошка кремния в концентрации 16,5-28 мас. % или карбида кремния в соответствующей концентрации по кремнию. Осуществляют электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере при отношении площадей анода к катоду 1:8. Продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния без примеси иных углеродных форм. Изобретение обеспечивает получение графенового материала высокого качества простым способом. 6 ил.

Изобретение относится к области нанотехнологий и может быть использовано для получения графена и композиционных материалов с высокой электро- и теплопроводностью на основе графена. Наиболее перспективным, относительно недорогим и доступным методом для получения графена достаточно высокого качества является химическое газофазное осаждение (CVD) на поверхности таких переходных металлов как Ni, Pd, Ru, Ir, Cu и др. Данный метод изучался и использовался еще до открытия графена. О формировании графеновых структур (тонкий графит) в результате подготовки поверхностей переходных металлов в промышленном гетерогенном катализе было известно в течение почти 50 лет. Графитизация поверхности металлов использовалась с целью изменения физических свойств поверхности и предотвращения коррозии. Слои графита впервые были обнаружены на поверхностях Ni, которые подвергались воздействию источников углерода в виде углеводородов или газообразного углерода. На сегодняшний день методом CVD получают поликристаллические пленки графена больших размеров. Преимуществом данного метода является масштабируемость получаемых образцов. Трудности этого метода связаны с контролем роста единичного слоя и наличием дефектов получаемого материала. Так же недостатком данного метода является необходимостью переноса графеновой пленки, выращенной на поверхности металла, на нужную поверхность. В процессе переноса пленки используют такие методы как вакуумное, химическое и электрохимическое травление металлических подложек. Механизм роста пленки связан с двумя процессами. Первый, термическое разложение углеродосодержащих газов на поверхности металлов. Второй, растворение углерода в металле при высоких температурах и последующая сегрегация (выделение) на поверхности углерода, при охлаждении металлической подложки. Растворимость углерода в металле, кристаллическая решетка материала подложки и условия процесса роста определяют морфологию и толщину (количество слоев) графеновой пленки. Рост на гексагональной решетке часто называют эпитаксиальным, даже если нет значительного совпадения между решеткой графита и подложки.

Альтернативным методом синтеза графена является электрическая дуга с графитовыми электродами (углеродная дуга). Углеродная дуга широко используется для синтеза различных УНМ, таких, как фуллерены, углеродные нанотрубки, луковичные структуры и графен. В большинстве случаев дуговой материал представляет собой смесь наноматериалов различного типа, в различных пропорциях, которые зависят от параметров разряда, атмосферы разряда и катализатора. Обогащение получаемой в углеродной дуге сажи графеновыми структурами происходит при использовании в качестве буферного газа смеси Н2+Не, H2+N2, H2+N2+He, H2+Ar, NH3 (при давлениях 400-700 тор). Данный эффект связывается с гидрированием углеродных кластеров зародышей, что предотвращает их свертывание в замкнутые структуры. Так же на формирование графеновых структур влияет теплоемкость и теплопроводность смеси буферных газов. При изменении температурного градиента в реакторе изменяется время пребывания углеродных фрагментов в области нуклеации углеродных кластеров и роста графитовых фрагментов. Наличие водорода в смеси при разряде не обязательное условие, известно, что графеновые плоскости в дуговом разряде так же формируются в атмосфере СО и воздуха (который в условиях разряда представляет собой смесь СО+N2), но при давлениях 1000-1300 тор.

Известен способ получения графена с высокой степенью кристалличности (патент CN №102153076, 2011 г., B82Y40/00; С01В 31/04), включающий электродуговое распыление графитовых стержней в различных газовых смесях, для распыления используется дуга постоянного тока.

Недостатками этого способа являются наличие в продуктах аморфного углерода, необходимость использовать водород для синтеза графена.

Наиболее близким по технической сущности заявляемому способу является способ (патент KR 20140092642, 2014 г., B01J 19/10; С01В 31/02; Н05В 7/18) получения графена высокого качества с использованием электродугового разряда, включающий электродуговое распыление графитовых стержней, при котором происходит распыление графитового электрода с введенной добавкой металла - катализатора. Ввод катализатора происходит путем запрессовки смеси порошков (металл и графит) в графитовый электрод.

Недостатком данного решения является наличие в продуктах синтеза различных наноформ графита (кроме графена присутствуют луковичные частицы, нанотрубки, фуллерены).

Задачей изобретения является разработка простого способа производства графенового материала высокого качества, без примеси иных углеродных форм.

Поставленная задача решается тем, что в дуговом способе получения графена, включающем электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере, при котором графитовый стержень заполняют графитовым порошком с добавкой, согласно изобретению, в качестве добавки используют порошок кремния в концентрации 16,5-28% по массе или карбида кремния в соответствующей концентрации по кремнию, отношение площадей анода к катоду 1:8, продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния.

Присутствие кремния существенно влияет на конденсацию паров углерода в плазменно-дуговой технологии синтеза. Основной эффект влияния состоит в увеличении доли графена в синтезированном материале при увеличении концентрации кремния. Данные измерений РФА и КР свидетельствуют о том, что формирование графеновых плоскостей коррелирует с присутствием наночастиц карбида кремния. Этот факт позволяет заключить, что наночастицы карбида кремния являются прекурсором для роста графена. На основе проведения качественного анализа процессов, происходящих при конденсации Si-C пара, сделано заключение о двух механизмах влияния кремния на конденсацию углерода. Во-первых, конденсация паров кремния, сопровождающаяся химической реакцией образования карбида кремния, влияет на кинетику конденсации углерода и подавливает формирование замкнутых углеродных кластеров. Во-вторых, формирование кристаллов карбида кремния приводит к возможности С - грани кристаллов карбида кремния выступать в роли шаблона для роста графеновых плоскостей. Отношение площадей анода к катоду 1:8 влияет на скорость распыления электродов и определяет соотношение концентраций паров кремния и углерода при конденсации.

Наличие аморфного углерода определялось на основе изображений просвечивающего электронного микроскопа. На фиг. 1-4 видно, что с увеличением концентрации кремния количество аморфного углерода снижается и при концентрации 16,5% и выше отсутствует.

На фиг. 1 показано ПЭМВР (просвечивающий электронный микроскоп высокого разрешения) изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 16,5% mass.

На фиг. 2 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 13% mass.

На фиг. 3 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 8% mass.

На фиг. 4 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремниям - 4,7% mass.

На фиг. 5 показано ПЭМВР изображение чистого С.

На фиг. 6 показано ПЭМВР изображение частицы SiC.

Способ осуществляется следующим образом.

Кремниевый порошок смешивается с графитовым и запрессовывается в центральное отверстие графитового электрода, без использования дополнительных связующих. При этом концентрация кремния к углероду в электроде должна соответствовать диапазону 16,5-28% по массе. Диаметры анода и катода выбираются 50 и 400 мм2, соответственно. Анодное распыление электрода происходит в атмосфере гелия при давлениях от 10 до 200 тор. Анодное распыление электрода происходит при напряжении 20 В, токе разряда 100-200 А. Сбор материала осуществляется с охлаждаемых стенок реактора.

Использование изобретения позволяет получать сажу состоящую из стопок графеновых слоев, с количеством графеновых слоев от 1 до 7. При концентрации добавки кремния больше 16,5% в материале отсутствует аморфный углерод, материал состоит только из графеновых плоскостей и наночастиц карбида кремния. Использование изобретения позволяет получать наночастицы карбида кремния диаметром 10-15 нм.

Дуговой способ получения графена, включающий электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере, при котором графитовый стержень заполняют графитовым порошком с добавкой, отличающийся тем, что в качестве добавки используют порошок кремния в концентрации 16,5-28% по массе или карбида кремния в соответствующей концентрации по кремнию, отношение площадей анода к катоду 1:8, продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния.
Источник поступления информации: Роспатент

Showing 61-70 of 95 items.
20.01.2018
№218.016.1e3a

Интенсивный конденсатор пара с контрастным и градиентным смачиванием

Изобретение относится к области интенсификации теплообмена при конденсации внутри труб и каналов, а также конденсации на поверхностях, расположенных в объеме пара. Интенсивный конденсатор пара с контрастным и градиентным смачиванием выполнен в форме охлаждаемого цилиндра, на внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002640888
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e46

Плоский эффективный конденсатор-сепаратор для микрогравитации и транспортных приложений

Изобретение относится к области мини- и микросистем, которые используют в электронике, медицине, энергетике, аэрокосмической индустрии, на транспорте и могут применяться в устройствах для охлаждения электроники. Согласно изобретению конденсатор и сепаратор выполнены в виде плоского охлаждаемого...
Тип: Изобретение
Номер охранного документа: 0002640887
Дата охранного документа: 12.01.2018
04.04.2018
№218.016.2f1b

Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора

Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в...
Тип: Изобретение
Номер охранного документа: 0002644625
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.3978

Способ комплексной экспресс диагностики периодического нестационарного вихревого течения и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать газожидкостные вихревые течения с любым соотношением жидкости и газа. Способ основан на совместном использовании ЛДА и PIV, включающем пропускание через измерительный объем лазерного излучения, проведение измерений...
Тип: Изобретение
Номер охранного документа: 0002647157
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.397f

Горелочное устройство

Изобретение относится к области энергетики, в частности к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Горелочное устройство содержит цилиндрический корпус, пароперегреватель, установленный на корпусе, распылительную паровую форсунку, топливопровод,...
Тип: Изобретение
Номер охранного документа: 0002647172
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39c1

Способ определения кинетических характеристик механоактивированного угля микропомола

Изобретение относится к области исследования свойств материалов, а более конкретно к способу определения кинетических характеристик угля микропомола, в том числе температуры воспламенения, энергии активации, предэкспоненциального множителя константы скорости реакции горения. Согласно...
Тип: Изобретение
Номер охранного документа: 0002647204
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.40f7

Устройство для испарения жидкости

Изобретение относится к области приборостроения, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности. В устройстве для испарения жидкости, содержащем мини- или микроканал для...
Тип: Изобретение
Номер охранного документа: 0002649164
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.413a

Способ охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости, основанном на движении тонкой пленки жидкости за счет потока...
Тип: Изобретение
Номер охранного документа: 0002649170
Дата охранного документа: 30.03.2018
18.05.2018
№218.016.5060

Способ осаждения алмазных плёнок из термически активированной смеси газов и реактор для его реализации

Изобретение относится к области получения искусственных алмазов методом химического газофазного осаждения, в частности, связано с активацией потока смеси нейтральных газов нагретыми металлическими поверхностями и может быть использовано в электронике, приборостроении, на предприятиях,...
Тип: Изобретение
Номер охранного документа: 0002653036
Дата охранного документа: 04.05.2018
25.06.2018
№218.016.66e0

Способ факельного сжигания низкосортных углей в котельных установках

Изобретение относится к области теплоэнергетики и может быть использовано для сжигания низкосортных углей и отходов их переработки в энергетических пылеугольных котлах. Способ факельного сжигания низкосортных углей в котельных установках, при котором уголь подвергают механической активации,...
Тип: Изобретение
Номер охранного документа: 0002658450
Дата охранного документа: 21.06.2018
Showing 11-16 of 16 items.
05.07.2019
№219.017.a554

Способ вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ включает импульсное скоростное вакуумирование в вакуумной камере при помощи вакуумного насоса, ресивера, трубопроводов с быстродействующими...
Тип: Изобретение
Номер охранного документа: 0002693586
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.af3d

Способ получения водорода и углеродных нанотрубок из углеводородного газа

Изобретение относится к химической промышленности и может быть использовано для получения водорода и углеродного наноструктурного материала. Предварительно в среде инертного газа осуществляют распыление катализатора до наноразмерных частиц путем испарения анодного графитового электрода, внутри...
Тип: Изобретение
Номер охранного документа: 0002414418
Дата охранного документа: 20.03.2011
23.02.2020
№220.018.0610

Способ повышения эффективности вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ вакуумной дезинтеграции золотоносных глинистых пород включает импульсное скоростное вакуумирование за время не более 1 секунды с достижением...
Тип: Изобретение
Номер охранного документа: 0002714787
Дата охранного документа: 19.02.2020
24.06.2020
№220.018.29ae

Способ изготовления оптического фильтра на основе графена

Изобретение относится к области нанотехнологий, а именно к использованию новых материалов, таких, как композиты полимер-графен-золото и полимер-графен-серебро, полученных с использованием метода химического осаждения из паровой фазы (ХОПФ). Предложен способ изготовления оптического фильтра на...
Тип: Изобретение
Номер охранного документа: 0002724229
Дата охранного документа: 22.06.2020
24.06.2020
№220.018.29f6

Способ изготовления нагревателя на основе графена

Изобретение относится к области нанотехнологий, а именно к области использования новых материалов, таких как композиты полимер-графен, полученные методом химического осаждения из паровой фазы (ХОПФ). Способ изготовления нагревателя на основе графена, содержащего прозрачную полимерную подложку с...
Тип: Изобретение
Номер охранного документа: 0002724228
Дата охранного документа: 22.06.2020
24.06.2020
№220.018.2a09

Способ изготовления термоакустического излучателя на основе графена

Изобретение относится к области нанотехнологий. Изобретение относится к области использования новых материалов, таких как композиты полимер-графен, полученных методом химического осаждения из паровой фазы (ХОПФ). Изобретение может найти применение в акустике. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002724227
Дата охранного документа: 22.06.2020
+ добавить свой РИД