×
04.04.2018
218.016.2f1b

ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух. При реализации способа поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество световых колец. При этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов. Технический результат изобретения – измерение поля толщины прозрачной наледи на лопастях ветрогенератора с низкой погрешностью измерения. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к областям промышленности и научных исследований, где требуется проведение оптических, бесконтактных, непрерывных измерений толщин прозрачного слоя вещества. Предполагается использование способа для измерения поля толщины прозрачной наледи в ветроэнергетике при контроле обледенения лопастей ветрогенератора.

Известен способ и устройство для дистанционного измерения толщины листа или слоя (патент СА 2179847, B64D 15/20, G01B 11/06, 1996 г.), при котором направляют когерентный пучок света в область на слое таким образом, чтобы луч претерпевал частичное отражение от верхней части слоя и частичное отражение от нижней части слоя или подстилающей поверхности. Благодаря когерентности пучка воспроизводятся две спекл-структуры, которые приводят к возникновению интерференционной картины, имеющей интерференционные полосы. Изменения в спекл-структуре, вызванные сдвигом в поле зрения или сдвигом, определяемым числом проходящих интерференционных полос, используются для определения толщины слоя.

Недостатки способа:

1) требует использования сложного дополнительного оборудования (систему призм);

2) способ позволяет проводить измерение только неподвижного слоя в одной точке;

3) погрешность зависит от наклона измеряемого слоя, от погрешности установки угла лазера и камеры. На погрешность измерения сильно влияет шероховатость измеряемого слоя, и в случае большой шероховатости метод требует осреднения результата по нескольким измерениям.

Известен способ и устройство для удаленного детектирования и измерения толщины слоя твердого или жидкого материала (патент US 5541733, B64F 5/00; G01B 11/06, 1996 г.), который предназначен для обнаружения и оценки толщины скопившегося твердого вещества, то есть льда, или жидкости на твердой поверхности. Устройство содержит источник излучения с узким пучком и средство для удаленной оценки размера световой области, созданной на твердой поверхности пучком излучения. Способ основывается на измерении размеров световой области и определении толщины любого образовавшегося слоя, если он достаточно прозрачный, с использованием формулы, которая использует зависимость размера световой области от толщины слоя и показатель преломления среды. Выбор между льдом и жидкостью осуществляется путем оценки регулярности освещения в световой области. Недостатки данного способа:

1) способ не позволяет проводить измерения подвижного слоя;

2) высокая погрешность измерения.

Наиболее близким по технической сущности заявляемому способу является способ измерения мгновенного поля толщины прозрачной пленки (патент РФ №2506537, G01B 11/06, 2012 г.), который включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую компьютерную обработку отраженного света. В способе источник света помещают над пленкой или под пленкой, от которого образуются лучи света, направленные под углами, меньшими предельного угла отражения на границе пленка-воздух и большими предельного угла отражения на границе пленка-воздух, а затем фиксируют изображение искаженного светового пятна, образованного на твердой поверхности под пленкой в результате полного внутреннего отражения света на границе раздела пленка-воздух, на видеокамеру, обрабатывают на компьютере, измеряют геометрические размеры светового пятна.

Недостатками данного способа являются:

1) сложность реализации способа, т.к. необходимо для каждого измерения создавать систему источников света под поверхностью или над поверхностью, что является проблематичным при измерении наледи на лопастях ветрогенератора;

2) расчет толщины наледи на лопасти ветрогенератора в конкретной точке лопасти таким способом справедлив только при условии, что луч лазера падает на лопасть вертикально, в противном случае измеренное значение толщины наледи не будет соответствовать месту падения луча лазера на границу раздела воздух-наледь. С увеличением отклонения падения луча лазера от вертикали указанное несоответствие будет увеличиваться и будет давать значительный вклад в погрешность измерения. Кроме того, измерение толщины наледи таким способом не позволяет однозначно привязать измеренную толщину к конкретной точке на лопасти.

Задачей изобретения является создание простого способа измерения поля толщины прозрачной наледи на лопастях ветрогенератора с низкой погрешностью измерения.

Поставленная задача решается тем, что в оптическом способе измерения поля толщины прозрачной наледи на лопастях ветрогенератора, при котором прозрачную наледь освещают, фиксируют на видеокамеру изображение искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух, производят компьютерную обработку отраженного света, согласно изобретению поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество искаженных световых колец, при этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов.

Наличие поверхности со светоотражающими элементами упрощает процесс измерения толщины наледи, а наличие модуля синхронизации с движущейся поверхностью и модуля накопления и фазового осреднения результатов позволяет накапливать результаты измерения в точке на поверхности, тем самым уменьшая погрешность измерения.

Располагают светоотражающие элементы равномерно по всей поверхности лопасти, причем их количество должно быть максимальным. Расстояние между светоотражающими элементами выбирается таким образом, чтобы при увеличении толщины наледи на лопасти изображения световых колец не пересекались. Есть формула для измерения толщины (в соответствии с прототипом):

h=(D-d)/4tg(arcsin(n1/n2)),

где h - толщина наледи, D - диаметр светового кольца, d - диаметр светоотражающего элемента, n1 - показатель преломления воздуха, n2 - показатель преломления льда. Если максимальная допустимая толщина наледи, которую нужно измерить, hmax, то расстояние, на которое стоит отнести светоотражающие элементы, должно удовлетворять неравенству:

Dmax≥8hmax⋅tg(arcsin(n1/n2)+2d.

Например, если максимальная измеряемая толщина наледи не должна превышать hmax=5 мм, диаметр светоотражающего элемента d=0,1 мм, то расстояние между светоотражающими элементами должно быть не менее 45,8 мм.

В качестве светоотражающих элементов используют либо нанесенную через трафарет краску с измельченными кусочками стекла или металла, либо маленькие зеркала. Размер светоотражающих элементов составляет 0,05-0,5 мм.

На фиг. 1 представлена блок-схема оптического устройства для измерения поля толщины прозрачной наледи на лопастях ветрогенератора, где:

1 - статор;

2 - ротор;

3 - осветитель;

4 - модуль оптического детектирования;

5 - модуль синхронизации с движущейся поверхностью;

6 - модуль измерения толщины наледи;

7 - модуль накопления и фазового осреднения результатов.

Способ осуществляется следующим образом.

Поверхность лопастей ротора 2, установленного на статор 1, покрывают множеством светоотражающих элементов, положение на лопасти каждого из них четко задано. Поверхность, покрытую прозрачной наледью, освещают осветителем 3, запускаемым по синхросигналу от модуля синхронизации с движущейся поверхностью 5. На поверхности образуются световые пятна, служащие источниками света на поверхности. В результате полного внутреннего отражения света на границе раздела наледь-воздух на поверхности под наледью возникают изображения искаженных световых колец. Изображение каждого светового кольца фиксируется модулем оптического детектирования 4. Затем изображения световых колец обрабатывают в модуле измерения толщины наледи 6. По геометрическим размерам светового кольца определяется мгновенная толщина наледи в зоне измерения. Модуль синхронизации с движущейся поверхностью 5 определяет текущее фазовое положение ротора 2 ветрогенератора и подает синхронизирующий сигнал на осветитель 3, модуль оптического детектирования 4 и модуль измерения толщины наледи 6. Модуль измерения толщины наледи 6 принимает изображения от модуля оптического детектирования 4 и сигнал модуля синхронизации с движущейся поверхностью 5. Модуль накопления и фазового осреднения результатов 7 синхронно принимает сигнал от модуля измерения толщины наледи 6, кодирующий значение толщины наледи, и сигнал от модуля синхронизации с движущейся поверхностью 5, кодирующий фазовое смещение ротора. Каждое измерение толщины однозначно привязывается к точке лопасти, где расположен светоотражающий элемент. По измеренным толщинам наледи на лопасти производится интерполяция. Измеряя геометрические размеры последовательных изображений световых колец, получают информацию об изменении поля толщины наледи во времени. Для каждой лопасти ротора происходит накопление и фазовое осреднение поля измеренной толщины наледи. В результате модуль накопления и фазового осреднения результатов 7 формирует информацию о текущей форме наледи на лопасти ротора - зависимость расстояния от верхней кромки наледи до каждой точки профиля лопасти в зависимости от фазового положения ротора. Информация из модуля накопления и фазового осреднения результатов 7 может быть передана на экран оператора и в информационную систему электростанции.

Предлагаемый оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора является бесконтактным, не оказывает воздействия на измеряемую наледь, является дешевым и простым в использовании. Использование заявляемого изобретения обеспечивает возможность прямых непрерывных измерений меняющегося во времени поля толщин прозрачной наледи с низкой погрешностью.

Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора, при котором прозрачную наледь освещают, фиксируют на видеокамеру изображение искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух, производят компьютерную обработку отраженного света, отличающийся тем, что поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество световых колец, при этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов.
ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА
ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА
Источник поступления информации: Роспатент

Showing 1-10 of 96 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.6230

Симметрирующее устройство для трехфазных сетей с нулевым проводом

Изобретение относится к электротехнике и может быть использовано для саморегулируемого симметрирования токов и напряжений в трехфазных сетях с нулевым проводом при подключении к ним несимметричной нагрузки. Симметрирующее устройство предназначено для повышения качества симметрирования токов и...
Тип: Изобретение
Номер охранного документа: 0002490768
Дата охранного документа: 20.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
Showing 1-10 of 66 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
+ добавить свой РИД