×
08.03.2019
219.016.d350

Результат интеллектуальной деятельности: Способ определения класса шумящей цели и дистанции до неё

Вид РИД

Изобретение

№ охранного документа
0002681432
Дата охранного документа
06.03.2019
Аннотация: Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для обнаружения подводных объектов и надводных объектов по их шумоизлучению. Технический результат - повышение достоверности классификации и точности определения дистанции шумящей цели. Технический результат достигается тем, что решение о классе цели и дистанции до нее принимается с использованием измеренных значений уровня сигнала от цели и ширины отметки цели, обнаруженной на выходе веера характеристик направленности приемной гидроакустической антенны. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям (ШПС), предназначенным для обнаружения подводных объектов (подводных лодок и подводных аппаратов) и надводных объектов по их шумоизлучению.

Наиболее сложными задачами, решаемыми такими ШПС, являются классификация обнаруженного объекта и определение дистанции до него.

Методы классификации и определения дистанции шумящих объектов приведены в работах [1, 6-15]. Недостатком большинства известных методов являются дополнительные требования, предъявляемые ими к конструкции ШПС (например, разнесенный прием шумовых сигналов) либо к обработке принимаемого шумового сигнала (например, спектрально-корреляционный анализ). В ряде случаев выполнение этих дополнительных требований затруднительно.

В качестве прототипа выберем способ классификации и определения дистанции обнаруженной шумящей цели, описанный в [4]. Он включает: формирование пеленгаци-онного рельефа (фиг. 1) на выходе горизонтального веера характеристик направленности (ХН) приемной гидроакустической антенны (далее - приемной антенны); обнаружение в пеленгационном рельефе методом двухстороннего контраста отметки цели; прослушивание оператором сигнала с выхода ХН, ось которой совпадает с максимумом отметки цели; принятие оператором по результатам прослушивания сигнала решения о классе цели и дистанции до нее.

Достоинством данного способа является его простота, а недостатком - невысокая эффективность (точность) классификации и определения дистанции, особенно при малых отношениях сигнал/помеха, при которых человеческий слух плохо улавливает особенности сигнала, присущие тому либо иному объекту.

Решаемая техническая проблема - повышение эффективности ШПС.

Достигаемый технический результат - повышение достоверности классификации и точности определения дистанции цели.

Сущность предлагаемого способа заключается в том, что с использованием пелен-гационного рельефа измеряют уровень сигнала от цели и ширину отметки обнаруженной цели и на основании полученных результатов принимают решение о классе и дистанции цели.

Обоснуем эффективность данного технического решения.

Известно следующее [2-5]:

1) Энергетические спектры подводного объекта и надводного объекта в точке излучения имеют идентичную форму, описываемую функцией

где S0/ω - спектральная плотность мощности шумоизлучения, зависящая от класса цели ω, на частоте сигнала от цели равной 1 кГц в полосе 1 Гц, называемая приведенной шумностью цели, Па2/Гц;

ƒ - частота сигнала от цели, кГц;

ƒ0 - приведенная частота, равная 1 кГц;

2) Приведенная шумность надводного объекта в среднем на 40 дБ превышает шумность современных подводных объектов, т.е.

3) Уровень сигнала от цели Uω(R), соответствующий максимуму отметки в пеленгационном рельефе, связан с дистанцией до цели формулой

где ƒH, ƒB - нижняя и верхняя границы рабочего диапазона частот, Гц;

γ(ƒ)- частотная зависимость передаточной характеристики линейной части приемного тракта ШПС, В/Па;

Sω(ƒ,R) - энергетический спектр на входе приемной антенны ШПС сигнала от цели класса ω, находящейся на расстоянии R от антенны, Па2/Гц, определяемый по формуле:

β(ƒ) - коэффициент пространственного затухания, дБ/км, вычисляемый по формуле:

a, b, с - коэффициенты, зависящие от района Мирового океана;

A(ƒ,R) - аномалия (по мощности) распространения сигнала (далее - аномалия распространения сигнала) частоты ƒ на расстояние R (рассчитывается для текущих гидроакустических условий по специальной программе);

Подставляя в формулу (3) формулу (4), получим:

4) Крутизна спада энергетического спектра сигнала от цели в сторону высоких частот при распространении в водной среде возрастает за счет более быстрого затухания высоких частот вследствие частотной зависимости коэффициента пространственного затухания β(ƒ) и частотной зависимости аномалии распространения сигнала от цели, которая определяется, в том числе частотно зависимыми коэффициентами отражения сигнала от границ волновода (дна и поверхности). По этой причине с увеличением расстояния до цели эквивалентная частота сигнала от цели от нее в рабочей полосе частот [ƒH, ƒB] смещается в сторону низких частот и, как следствие, ширина отметки цели в пеленгационном рельефе возрастает.

5) Ширина отметки обнаруженной цели Δα(R), град, в пеленгационном рельефе (далее - ширина отметки), измеренная на уровне половины мощности, определяется решением относительно Δα(R) уравнения

где D(ƒ,Δθ,L) - значение нормированной ХН приемной антенны на частоте ƒ в направлении, отстоящем от оси ХН на горизонтальный угол θΔ при горизонтальном эффективном размере приемной антенны L;

S(ƒ,R) - энергетический спектр на входе приемной антенны ШПС сигнала от цели.

Уравнение (7) при подстановке в него формулы (4) и сокращении идентичных констант в числителе и знаменателе принимает вид:

Заметим, что уровень сигнала от цели Uω(R) зависит как от дистанции до цели, так и от ее класса, а ширина отметки Δα(R) зависит только от дистанции до цели. Этот факт дает возможность, подставив измеренные значения уровня сигнала от цели и ширины отметки в качестве значений в функции Uω(R) и Δα(R), определить значения их аргументов: из первой функции - дистанции по гипотезам "цель - подводный объект" (RПО) и "цель - надводный объект" (R); из второй функции - дистанцию RΔα, не зависящую от класса цели. Тогда в качестве класса цели может быть выбран тот класс, для которого оценки дистанции, рассчитанные на основе измеренных значений уровня сигнала и ширины отметки, более близки друг к другу, т.е.

Дистанция до цели может быть вычислена путем осреднения значений дистанции, рассчитанных исходя из предположения о том, что класс цели - «подводный объект» или класс цели - «надводный объект»:

Рассмотрим характерный конкретный случай:

1) гидроакустические условия соответствуют сплошной акустической освещенности в мелком море (а=0, b=0.036, с=1.5);

2) горизонтальный эффективный размер приемной антенны L, равный 3 м;

3) рабочий диапазон частот от 4 кГц до 8 кГц, ƒH=4 кГц, ƒВ=8 кГц;

На фиг. 2 и 3 для названных условий в зависимости от дистанции до цели представлены:

- уровни сигнала «подводный объект» и «надводный объект» (фиг. 2), посчитанные для приведенных шумностей подводного объекта и надводного объекта 60 и 100 дБ, соответственно, и при условии, что частотная зависимость передаточной характеристики линейной части приемного тракта ШПС одинакова для всех частот и равна единице;

- ширина отметки цели (фиг. 3).

Рассмотрим пример расчета, когда на дистанции 20 км обнаружен подводный объект с приведенной шумностью 62 дБ. Измеряя (с ошибками) параметры ее отметки, получим: измеренное значение уровня сигнала от цели, равное -65 дБ и измеренное значение ширины отметки цели, равное 5,3°. По графику на фиг. 2 по измеренному значению уровня сигнала определяем дистанции по гипотезе "цель - подводный объект" RПО=22 км и по гипотезе "цель - надводный объект" R=83 км. По графику на фиг. 3 по ширине отметки

цели определяем дистанцию до цели R=19 км, не зависящую от ее класса.

Сравнивая дистанцию до цели R, полученную по ширине отметки, с дистанциями, полученными по уровню сигнала по двум гипотезам, видим, что она близка к дистанции по гипотезе "цель - подводный объект". Принимается решение, что цель - подводный объект.

Вычисляем дистанцию до подводного объекта: R=(19+22)/2=20,5 км. Таким образом, обеспечивается одновременное определение класса цели и дистанции до нее и достигается заявленный технический результат.

Источники информации:

1. Справочник штурмана. Под ред. В.Д. Шандабылова // М.: Воениздат, 1968.

2. Урик Р.Дж. Основы гидроакустики. // Л.: Судостроение, 1978.

3. Бурдик B.C. Анализ гидроакустических систем / Пер. с англ. // Л.: Судостроение, 1988.

4. Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. Состояние и актуальные проблемы. // СПб.: Наука, 2004.

5. Малышкин Г.С.Оптимальные и адаптивные методы обработки гидроакустических сигналов. Т. 1. Оптимальные методы. // ОАО "Концерн "ЦНИИ "Электроприбор", 2009.

6. Телятников В.И. Методы и устройства классификации гидроакустических сигналов // Зарубежная радиоэлектроника, 1979, №9, с. 19-38.

7. Телятников В.И. Методы и устройства для определения местоположения источника звука. // Зарубежная радиоэлектроника, 1978, №4. С. 66-86.

8. Carter G.С. Passive Ranging Errors due to Receiving Hydrophone Position Uncertainty // JASA, 1979. Vol. 65, №2. P. 528-530. Hassab I.C., Boucher R.E. Passive Ranging Estimation from an Array of Sensors // Journal of Sound and Vibration, 1979. Vol. 67, №2. P. 289-292.

9. Hassab I.C. Contact Localization and Motion Analysis in the Ocean Environment: a Perspective // IEEE Journal of Oceanic Engineering, 1983. Vol. OE-8, №3. P. 136-147.

10. Исак В.А. Измерение дистанции пассивными методами // Морской сборник, 1987. №5. С. 68-70.

11. Картер Дж.К. Обработка сигналов в пассивной гидролокации. В кн. Подводная акустика и обработка сигналов. // М.: Мир, 1985. С. 415-421.

12. Quazi А.Н. An Overview on the Time-Delay Estimate in Active and Passive Systems for Target Localization // IEEE Transactions on ASSP, 1987. Vol. 9, №3. P. 527-533.

13. Патент РФ №2128848

14. Blackman S., Popoli R. Design and analyses of modern tracking systems. - Artech House, 1999. 1230 p.

15. Гампер Л.Е. О точности методов пассивной гидролокации с разнесенными бортовыми антеннами // Научно-технич. сборник "Гидроакустика", 2009, вып. 9, с. 34-42.

16. Подводная акустика и обработка сигналов /под редакцией Л. Бъерне. // М.: Мир, 1985.


Способ определения класса шумящей цели и дистанции до неё
Способ определения класса шумящей цели и дистанции до неё
Способ определения класса шумящей цели и дистанции до неё
Источник поступления информации: Роспатент

Showing 71-80 of 87 items.
05.02.2020
№220.017.fe8a

Приемный гидроакустический блок

Изобретение относится к гидроакустической технике, а точнее к гидроакустическим антеннам, устанавливаемым на подводных лодках, надводных кораблях и подводных аппаратах. Достигаемый технический результат - одновременное увеличение сектора углов обзора, прочности, технологичности изготовления и...
Тип: Изобретение
Номер охранного документа: 0002713007
Дата охранного документа: 03.02.2020
23.02.2020
№220.018.04c2

Микромеханический гироскоп

Изобретение относится к области точного приборостроения, в частности к вибрационным микромеханическим гироскопам (ММГ), измеряющим угловую скорость. Сущность изобретения заключается в том, что в ММГ со встроенным датчиком температуры, квадратурными электродами и управляемыми источниками...
Тип: Изобретение
Номер охранного документа: 0002714870
Дата охранного документа: 19.02.2020
23.02.2020
№220.018.04df

Способ компенсации синфазной помехи в микромеханическом гироскопе

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам (ММГ) вибрационного типа. Сущность изобретения заключается в том, что предварительно экспериментально определяют зависимость амплитуды компенсирующего напряжения на синфазных электродах от выходного...
Тип: Изобретение
Номер охранного документа: 0002714955
Дата охранного документа: 21.02.2020
15.04.2020
№220.018.1494

Способ определения динамической погрешности магнитного компаса, вызванной качкой, и устройство для его реализации

Группа изобретений относится к области измерительной техники и может быть использовано для определения значения динамической погрешности магнитного компаса (МК). Способ определения динамической погрешности магнитного компаса, вызванной качкой, заключается в том, что качка воспроизводится в...
Тип: Изобретение
Номер охранного документа: 0002718691
Дата охранного документа: 13.04.2020
24.06.2020
№220.018.2996

Способ изготовления заготовок кварцевых световодов

Изобретение относится к способу изготовления заготовок кварцевых световодов. Техническим результатом является уменьшение массоуноса заготовок кварцевых световодов и повышение прочности световодов. Способ изготовления заготовок кварцевых световодов включает нагрев кварцевой трубы с помощью...
Тип: Изобретение
Номер охранного документа: 0002724076
Дата охранного документа: 19.06.2020
25.06.2020
№220.018.2b2f

Способ осуществления гидроакустической связи между автономными подводными аппаратами

Изобретение относится к аппаратуре и способам гидроакустической связи (гидроакустической связи) между автономными подводными аппаратами (ПА). Решаемая техническая проблема - совершенствование гидроакустической связи между подводными аппаратами. Технический результат - повышение дальности и...
Тип: Изобретение
Номер охранного документа: 0002724300
Дата охранного документа: 22.06.2020
01.07.2020
№220.018.2d99

Способ определения координат морской шумящей цели

Изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению, а точнее к способам определения координат целей с использованием интерференционных максимумов в автокорреляционной функции шума цели. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002724962
Дата охранного документа: 29.06.2020
15.05.2023
№223.018.5888

Способ изготовления анизотропных одномодовых волоконных световодов

Изобретение относится к технологии изготовления сохраняющих поляризацию излучения одномодовых волоконных световодов с эллиптической напрягающей оболочкой. Заявленный способ изготовления анизотропных одномодовых волоконных световодов с эллиптичной напрягающей оболочкой включает получение MCVD...
Тип: Изобретение
Номер охранного документа: 0002764240
Дата охранного документа: 14.01.2022
15.05.2023
№223.018.58ef

Способ проводки судна через заминированный район моря

Изобретение относится к способам проводки судов через заминированный район моря. При подходе к заминированному району судно стопорит ход и спускает на воду автономный необитаемый подводный аппарат (АНПА), оснащённый аппаратурой поиска мин. АНПА под управлением собственной системы управления...
Тип: Изобретение
Номер охранного документа: 0002760802
Дата охранного документа: 30.11.2021
15.05.2023
№223.018.58f8

Способ определения класса шумящего морского объекта

Изобретение относится к области гидроакустики, а именно к гидроакустическим комплексам (ГАК), оснащенным пассивным и активным режимами работы, и предназначенным для обнаружения подводных и надводных объектов. Технический результат - повышение вероятности классификации на предельных дистанциях...
Тип: Изобретение
Номер охранного документа: 0002760912
Дата охранного документа: 01.12.2021
Showing 31-36 of 36 items.
12.04.2023
№223.018.4297

Способ обсервации подводного аппарата

Использование: изобретение относится к способам навигации автономных подводных аппаратов (ПА), конкретно к гидроакустическим способам определения местонахождения ПА с использованием подводных акустических маяков. Сущность: вместо активного акустического маяка, излучающего гидроакустические...
Тип: Изобретение
Номер охранного документа: 0002763114
Дата охранного документа: 27.12.2021
15.05.2023
№223.018.58ef

Способ проводки судна через заминированный район моря

Изобретение относится к способам проводки судов через заминированный район моря. При подходе к заминированному району судно стопорит ход и спускает на воду автономный необитаемый подводный аппарат (АНПА), оснащённый аппаратурой поиска мин. АНПА под управлением собственной системы управления...
Тип: Изобретение
Номер охранного документа: 0002760802
Дата охранного документа: 30.11.2021
15.05.2023
№223.018.58f8

Способ определения класса шумящего морского объекта

Изобретение относится к области гидроакустики, а именно к гидроакустическим комплексам (ГАК), оснащенным пассивным и активным режимами работы, и предназначенным для обнаружения подводных и надводных объектов. Технический результат - повышение вероятности классификации на предельных дистанциях...
Тип: Изобретение
Номер охранного документа: 0002760912
Дата охранного документа: 01.12.2021
01.06.2023
№223.018.7516

Распределенная система подводного наблюдения

Изобретение относится к области гидроакустики, а именно к распределенным системам подводного наблюдения (РСПН). Технический результат - повышение дальности обнаружения и точности определения координат и параметров движения малошумных подводных объектов. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002741760
Дата охранного документа: 28.01.2021
01.06.2023
№223.018.751c

Способ определения класса шумящего морского объекта

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для обнаружения подводных объектов и надводных объектов по их шумоизлучению. Технический результат - повышение достоверности классификации на предельных дальностях обнаружения...
Тип: Изобретение
Номер охранного документа: 0002746581
Дата охранного документа: 19.04.2021
19.06.2023
№223.018.81c4

Способы определения координат морской шумящей цели

Использование: изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению, а точнее к способам определения координат целей с использованием интерференционных максимумов в автокорреляционной функции шума цели. Сущность: в...
Тип: Изобретение
Номер охранного документа: 0002797161
Дата охранного документа: 31.05.2023
+ добавить свой РИД