×
11.01.2019
219.016.ae9c

Результат интеллектуальной деятельности: Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию

Вид РИД

Изобретение

Аннотация: Изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке устойчивости к дезактивации в каталитических реакциях. Предварительно проводят нагрев цеолитного катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, после чего осуществляют процесс каталитической олигомеризации под давлением в три стадии. На первой и третьей стадиях процесс ведут при 380-450°С, а на второй стадии при 450-600°С. Предложены параметры проведения упомянутых трех стадий. После проведения первой и третьей стадии определяют значения степени конверсии, и по разности между полученными значениями оценивают устойчивость тестируемого катализатора к дезактивации. Изобретение обеспечивает возможность проведения экспресс-тестирования, позволяющего за несколько часов оценить устойчивость к дезактивации тестируемого образца. 3 з.п. ф-лы, 1 табл., 9 пр.

Заявленное изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке их устойчивости к дезактивации в каталитических процессах.

Из уровня техники известны способы определения устойчивости катализаторов к дезактивации путем разработки подробной математической модели, описывающей работу катализатора. Далее экспериментально определяются параметры, необходимые для численного решения математических уравнений. После этого модель может быть использована для предсказания работы катализатора в тех или иных условиях.

Разработана математическая модель, описывающая работу катализатора гидроочистки с оценку его устойчивости к дезактивации путем проведения сложных математических расчетов (L.E. Kallinikos, G.D.B., N.G. Papayannakos, Study of the catalyst deactivation in an industrial gasoil HDS reactor using a mini-scale laboratory reactor. Fuel, 2008. 87: p. 2444-2449.).

Недостатком данного подхода является то, что для подтверждения правильности математической модели необходимо провести сравнение расчетных результатов с реальными показателями, достигнутыми в пилотных или промышленных реакторах. Кроме того, известный метод рекомендован только для катализаторов процесса гидроочистки.

Известны способы определения устойчивости катализаторов к дезактивации путем исследования свежего и дезактивированного образцов катализатора. Дезактивированный образец получают либо в реальных условиях промышленных испытаниях, либо подвергают специальной процедуре ускоренной дезактивации.

Например, известен способ тестирования скорости дезактивации катализаторов Фишера-Тропша и их предшественников. Согласно известному способу скорость дезактивации вычисляют с помощью линейно-регрессионного анализа конверсии СО в процентах от времени работы в течение от 24 часов до 160 часов (RU 2603136, 2016)..

Известный способ является продолжительным и трудоемким и предназначен для тестирования только катализаторов Фишера-Тропша.

Известна оценка устойчивости к дезактивации катализаторов риформинга, предусматривающая осуществление ускоренной дезактивации. Для ускорения процесса дезактивации предложено проводить процесс коксообразования за счет сочетания высокой нагрузки по сырью и повышенной температуры реакции риформинга. (Н.М. Островский, Кинетика дезактивации катализаторов: Математические модели и их применение, Наука, 2001).

Известный способ пригоден для тестирования катализаторов риформинга, но не дает корректных результатов для катализаторов, используемых в реакциях олигомеризации.

В уровне техники не обнаружена известность способов тестирования устойчивости к дезактивации катализаторов высокотемпературной олигомеризации олефинов.

Задачей настоящего изобретения является разработка надежного способа экспресс-тестирования устойчивости к дезактивации цеолитных катализаторов олигомеризации олефинов в бензиновую фракцию.

Поставленная задача решается предложенным способом тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию, который заключается в предварительном нагреве катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, и последующем осуществлении процесса каталитической олигомеризации под давлением в три этапа. Причем на первом этапе в реактор подают сжиженную бутан-бутиленовую фракцию в потоке газа-носителя в течение 85-95 минут при температуре 380-450°С с отбором проб на анализ, по результатам которого определяют степень конверсии (К0), на втором этапе поднимают температуру в реакторе до 450-600°С и производят подачу в реактор при установленной температуре сжиженной бутан-бутиленовой фракции под давлением в потоке газа-носителя в течение 175-185 минут, на третьем этапе вновь снижают температуру до 380-450°С и при установленной температуре подают сжиженную бутан-бутиленовую фракцию под давлением в потоке газа-носителя в течение 85-95 минут с отбором газовой и жидкой проб на анализ, по результатам которого определяют степень конверсии (К1), после чего вычисляют разность ΔК=К01, при этом чем ниже полученное значение ΔК, тем выше устойчивость катализатора к дезактивации.

Предпочтительно, процесс олигомеризации проводят под давлением 0,3-2,0 МПа, при расходе бутан-бутиленовой фракции 5-50 мл/ч, расходе метана 5-50 мл/мин.

Предпочтительно, тестированию подвергают катализатор с размером частиц 0,25-0,5 мм.

Предпочтительно, в качестве газа-носителя используют метан.

Техническим результатом изобретения является обеспечение возможности проведения надежного экспресс-тестирования катализаторов олигомеризации, позволяющего за несколько часов эксперимента осуществить сравнительную оценку устойчивости к дезактивации различных цеолитных катализаторов олигомеризации.

Следует заметить, что в настоящее время на практике для выбора катализатора олигомеризации, обладающего лучшей устойчивостью к дезактивации в данном процессе, осуществляют олигомеризацию олефинов в бензиновую фракцию в реальных условиях олигомеризации до заданной степени дезактивации катализатора, что занимает не менее нескольких недель тестирования.

Надежность предлагаемого способа проверена на большинстве используемых цеолитных катализаторах олигомеризации. Для испытанных катализаторов экспериментально определены параметры проведения ускоренного процесса олигомеризации, в котором на поверхности катализатора образуются коксовые отложения, свойства которых аналогичны свойствам коксовых отложений, образующихся в реальных условиях проведения процесса. Нами было обнаружено, что для различных типов цеолитов, используемых в качестве катализаторов олигомеризации, заявленные параметры (температура и время) поэтапной дезактивации, при которых реализуются процессы образования легкого кокса, представленного полиалифатическими углеводородами, и тяжелого кокса, представленного поликондесироваными ароматическими соединениями, находятся при близких значениях параметров. Проведение предварительных экспериментов на ряде цеолитов позволило нам выбрать параметры предложенного способа тестирования, являющиеся существенными для возможности реализации назначения изобретения с достижением заявленного результата.

Ниже представлены примеры определения устойчивости к дезактивации цеолитных катализаторов олигомеризации, содержащие цеолиты различных структурных типов и связующее (оксид алюминия), заявленным способом тестирования.

Длительность одного экспресс-анализа не превышает 8 часов.

Пример 1.

1.1 Загрузка катализатора

В реактор загружают 0,6 см3 катализатора олигомеризации, содержащего в качестве активного компонента цеолит структуры MFI и в качестве связующего оксид алюминия. Для испытаний используют фракцию 0,25-0,5 мм. Затем реактор герметизируют, опрессовывают азотом при давлении 2 МПа.

1.2 Предобработка

Устанавливают расход метана 100 мл/мин и продувают реактор в течение 10 минут. Затем повышают давление в реакторе до 1,5 МПа за счет потока метана, после чего снижают расход метана до 10 мл/мин. Устанавливают нагрев реактора до 380°С со скоростью 15°/мин и нагрев испарителя до 200°С, устанавливают температуру в сепараторе на уровне 15°С.После достижения температуры в реакторе 380°С выдерживают катализатор в токе метана в течение 15 минут.

1.3 Определение начальной активности катализатора

Устанавливают расход сжиженного ББФ 10 мл/ч. (и продолжают подавать 10 мл/мин метана, который выступает в качестве внутреннего стандарта). Корректируют температуру в слое катализатора, если из-за его разогрева температура в слое изменится более чем на 1°С по сравнению с целевым значением 380°С. Через 90 минут после начала подачи ББФ отбирают пробу олигомеризата и анализируют с помощью хроматографического анализа олигомеризат и газовые продукты. По результатам анализа определяют начальную степень конверсии (К0).

После отбора газовой и жидкой проб и начала их анализа отключают подачу ББФ и увеличивают расход метана до 100 мл/мин. Увеличивают температуру в реакторе до 550°С, после чего снижают расход метана до 10 мл/мин.

1.4 Ускоренная дезактивация катализатора в жестких условиях Устанавливают расход сжиженного ББФ 10 мл/ч. Выдерживают катализатор в условиях ускоренной дезактивации в течение 180 мин.

Затем отключают подачу ББФ и увеличивают расход метана до 100 мл/мин. Снижают температуру в реакторе до 380°С, после чего снижают расход метана до 10 мл/мин.

1.5 Определение активности катализатора после ускоренной дезактивации Устанавливают расход сжиженного ББФ 10 мл/ч. Корректируют температуру в слое катализатора, если из-за его разогрева температура в слое изменится более чем на 1°С по сравнению с целевым значением 380°. Через 90 минут после начала подачи ББФ отбирают пробу олигомеризата и анализируют с помощью хроматографического анализа олигомеризат и газовые продукты. По результатам анализа определяют степень конверсии дезактивированного катализатора (K1).

Показатели процесса представлены в таблице 1.

Пример 2.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры MOR.

Показатели процесса представлены в таблице 1.

Пример 3.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры ВЕА.

Показатели процесса представлены в таблице 1.

Пример 4.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры FAU. Показатели процесса представлены в таблице 1.

Пример 5.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве инертного газа используют гелий.

Показатели процесса представлены в таблице 1.

Пример 6.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что определение активности катализатора до и после ускоренной дезактивации проводят при температуре 450°С, а ускоренную дезактивацию - при 600°С.

Показатели процесса представлены в таблице 1.

Пример 7.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что стадию ускоренной дезактивации проводят при 450°С. Показатели процесса представлены в таблице 1.

Пример 8.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что процесс проводили при давлении 0,3 МПа, расходе бутан-бутиленовой фракции 5 мл/ч, расходе метана 50 мл/мин.

Показатели процесса представлены в таблице 1.

Пример 9.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что процесс проводили при давлении 2,0 МПа, расходе бутан-бутиленовой фракции 50 мл/ч, расходе метана 5 мл/мин.

Показатели процесса представлены в таблице 1.

Приведенные примеры 1-9 подтверждают, что заявленный способ тестирования позволяет быстро и точно провести сравнение стабильности работы различных цеолитных катализаторов в процессе олигомеризации олефинов. Результаты проведенного тестирования позволяют выбрать наиболее эффективный катализатор для данного процесса, который обладает приемлемой степенью конверсии и наибольшей устойчивостью к дезактивации.

Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
04.04.2018
№218.016.3052

Способ получения бензиновых фракций углеводородов из олефинов

Изобретение относится к способу получения бензиновых фракций углеводородов путем контактирования олефинсодержащих фракций с цеолитсодержащим катализатором. При этом используют катализатор типа ZSM-5 с дезактивированной внешней поверхностью, полученный обработкой Н-формы цеолита ZSM-5...
Тип: Изобретение
Номер охранного документа: 0002644781
Дата охранного документа: 14.02.2018
14.02.2019
№219.016.b9f9

Установка твердокислотного алкилирования

Изобретение относится к установке твердокислотного алкилирования, содержащей блок подготовки сырья, включающий депропанизатор, блок алкилирования, включающий реактор со слоями катализатора, каждый из которых снабжен линией подвода сырья, а также линию отвода продуктовой смеси в блок разделения...
Тип: Изобретение
Номер охранного документа: 0002679624
Дата охранного документа: 12.02.2019
Showing 31-40 of 66 items.
04.04.2018
№218.016.3052

Способ получения бензиновых фракций углеводородов из олефинов

Изобретение относится к способу получения бензиновых фракций углеводородов путем контактирования олефинсодержащих фракций с цеолитсодержащим катализатором. При этом используют катализатор типа ZSM-5 с дезактивированной внешней поверхностью, полученный обработкой Н-формы цеолита ZSM-5...
Тип: Изобретение
Номер охранного документа: 0002644781
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.43b7

Способ получения 2-этилгексеналя

Настоящее изобретение относится к способу получения 2-этилгексеналя, который используют в качестве сырья для получения 2-этилгексанола - пластифицирующей добавки к композитам из поливинилхлорида. Способ включает конденсацию н-бутаналя на гетерогенном катализаторе при повышенной температуре и...
Тип: Изобретение
Номер охранного документа: 0002649577
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4e60

Способ получения микро-мезопористого цеолита y и цеолит, полученный этим способом

Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами. Способ получения микро-мезопористого цеолита Y включает суспендирование и активацию деалюминированного цеолита Y...
Тип: Изобретение
Номер охранного документа: 0002650897
Дата охранного документа: 18.04.2018
29.06.2018
№218.016.68fd

Способ лечения дискинезий желчевыводящих путей по гиперкинетическому и гипокинетическому типам физиотерапевтическим методом и устройство для воздействия на желчный пузырь и желчевыводящие пути

Группа изобретений относится к медицине, а именно к гастроэнтерологии и физиотерапии. Портативное физиотерапевтическое устройство для лечения дискинезии желчевыводящих путей (ДЖВП) по гипокинетическому и гиперкинетическому типу содержит автономный источника питания, два многоразовых электрода,...
Тип: Изобретение
Номер охранного документа: 0002659146
Дата охранного документа: 28.06.2018
02.08.2018
№218.016.77eb

Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием

Изобретение относится к области нефтепереработки, а именно к разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора. Заявлен катализатор изодепарафинизации дизельных дистиллятов,...
Тип: Изобретение
Номер охранного документа: 0002662934
Дата охранного документа: 31.07.2018
15.12.2018
№218.016.a7d9

Гранулированный без связующего кристаллический цеолит mfi и способ его получения

Изобретение относится к синтезу цеолитов. Предложен гранулированный без связующего кристаллический цеолит типа MFI и способ его синтеза. Способ включает пропитку твердых частиц силикагеля раствором реакционной смеси с получением прекурсора, характеризующегося составом, соответствующим области...
Тип: Изобретение
Номер охранного документа: 0002675018
Дата охранного документа: 14.12.2018
29.03.2019
№219.016.f125

Способ мониторинга примесей в воздухе

Изобретение относится к способу мониторинга газообразных и парообразных примесей в воздухе. Способ включает отбор пробы анализируемого воздуха, разделение пробы воздуха на два потока и проведение аналитических операций в каждом из потоков. В первом потоке измеряют содержание целевой примеси...
Тип: Изобретение
Номер охранного документа: 0002390750
Дата охранного документа: 27.05.2010
29.03.2019
№219.016.f757

Способ получения изопрена

Изобретение относится к способу жидкофазного получения изопрена путем взаимодействия формальдегида с изобутиленом или его производными в присутствии твердофазного катализатора и последующего выделения целевого продукта, характеризующемуся тем, что в качестве катализатора используют фосфаты,...
Тип: Изобретение
Номер охранного документа: 0002446138
Дата охранного документа: 27.03.2012
29.03.2019
№219.016.f786

Способ переработки полупродуктов синтеза изопрена

Изобретение относится к способу переработки полупродуктов синтеза изопрена, полученных на стадии конденсации формальдегида и изобутилена или его производных, включающему разложение полупродуктов синтеза на катализаторе с получением изопрена, характеризующемуся тем, что в качестве катализатора...
Тип: Изобретение
Номер охранного документа: 0002447049
Дата охранного документа: 10.04.2012
24.05.2019
№219.017.5ed0

Способ получения дорожного битума

Изобретение относится к области нефтепереработки, в частности к способу получения дорожного битума марки БНД 70/100 по ГОСТ 33133-2014. Способ получения дорожного битума включает окисление композиции из утяжеленного гудрона, полученного из смеси нефтей «Юралс» с показателем вязкости ВУ более...
Тип: Изобретение
Номер охранного документа: 0002688633
Дата охранного документа: 21.05.2019
+ добавить свой РИД