×
25.10.2018
218.016.9599

Результат интеллектуальной деятельности: Способ модификации электродных материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов и других электрохимических устройств. Способ модификации электродных материалов включает пропитку пористой электродной матрицы модифицирующей добавкой. Скорость лимитирующей стадии электродной добавки выше скорости лимитирующей стадии электродной матрицы при условии изоструктурности материалов добавки и электродного материала. Изобретение позволяет исключить рутинный выбор модифицирующей добавки, а также деградацию электродов во времени. 10 ил., 1 табл.

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности путем пропитки их матрицы модифицирующей добавкой и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов и других электрохимических устройств.

Повышение электрохимической активности кислородных электродов путем введения в структуру электрода модифицирующих добавок известно. Так, известен способ модификации катодных электродов с помощью оксида меди [1]. Оксид меди в качестве модифицирующей добавки перемешивают с манганитом La1-xMexMnO3, где Me = Sr, Ca; x = 0.2 - 0.5 при следующем соотношении компонентов, мас.%: манганит - 90-99.5, оксид меди - 0.5-10. Однако добавка CuO приводит к спекаемости электрода и химическому взаимодействию с материалом электрода, тем самым ухудшая электрохимические характеристики во времени.

Наиболее близким к заявляемому является способ модификации кислородного электрода путем пропитки пористой электродной матрицы химического состава 50%La0.8Sr0.2MnO3 + 50%Zr0.82Sc0.18O1.91 (LSM-SSZ) электрокаталитической добавкой из PrO2-x [2]. Введение оксида празеодима в матрицу композитных LSM-SSZ электродов существенно повышает скорость кислородной реакции на полтора порядка величины. Электрохимическая активность электродов сохраняется постоянной при их термообработке от 700 до 900°С, включительно. Модификация La0.6Sr0.4Fe0.8Co0.2O3-δ (LSCF) и La0.6Sr0.4Fe0.8Co0.2O3-δ-Ce0.8Sm0.2O1.9 (LSCF-SDC) электродов, сформированных на (La,Sr)(Ga,Mg)O3-α (LSGM) электролите, производилась также кобальтитом лантана-стронция состава La0.8Sr0.2CoO3 (LSC). Модификация электродов как РrО2-х, так и LSC приводит к возрастанию электрохимической активности электродов приблизительно в 3.5 раза. Однако при использовании оксида празеодима наблюдается существенная деградация электродов во времени за счет высокой химической активности, фазовым переходам и нестабильности PrO2-x. Сведений об экспериментах по изучению временной стабильности с электродами, модифицированными оксидом LSC, заявитель не имеет.

Выбор добавок в известных способах модификации электродных материалов, включая вышеприведенные, основан на рутинном и трудозатратном переборе добавок с разным химическим составом, введение которых развивает поверхность электрода и этим улучшает электродные процессы. При этом использование модифицирующих добавок в способе [2] повышает электрохимическую активность электродов, но приводит к деградации электродов во времени.

Задача настоящего изобретения заключается в разработке способа модификации электродных материалов, исключающего рутинный выбор модифицирующей добавки, а также предотвращающий деградацию электродов во времени.

Предложен способ модификации электродных материалов, который, как и способ - прототип, включает пропитку пористой электродной матрицы модифицирующей добавкой. Способ отличается тем, что используют модифицирующую добавку, скорость лимитирующей стадии которой выше скорости лимитирующей стадии электродной матрицы при условии изоструктурности материалов добавки и электродного материала.

Исследования показали, что электрохимическая активность кислородных электродов, пропитанных модифицирующими добавками, в первую очередь зависит от влияния на скорость лимитирующей стадии процесса обмена, что не является известным. Исходя из этого, в заявленном способе используют модифицирующую добавку, скорость лимитирующей стадии которой выше скорости лимитирующей стадии электродной матрицы. Это исключает необходимость поиска добавки, влияющей на электрохимическую активность кислородных электродов путем рутинного перебора. Изоструктурность материалов катализатора и электрода в предлагаемом способе приводит к стабилизации материала, исключая его деградацию во времени.

Новый технический результат, достигаемый заявленным способом, заключается в увеличении скорости реакции обмена кислорода, повышающей электрохимическую активность электрода в целом при стабилизации материала добавки и электрода.

Заявленный способ иллюстрируется рисунками, где на фиг.1 представлена зависимость скорости диссоциативной адсорбции и инкорпорирования от давления кислорода для PrBaCo2O6–δ ; на фиг.2 – то же для SmBaCo2O6–δ ; на фиг.3 представлены микрофотографии электродов симметричных ячеек до пропитки; на фиг.4 – микрофотографии электродов симметричных ячеек после модификации SmBaCo2O6–δ; на фиг.5 – микрофотографии электродов симметричных ячеек после модификации PrBaCo2O6–δ; на фиг.6 - представлены годографы импеданса при температуре 600°С для двух симметричных ячеек SmBaCo2O6–δ | Ce0.8Sm0.2O1.9 | SmBaCo2O6–δ до пропитки и после пропитки; на фиг.7– микрофотографии «модифицированных» электродов до пропитки; на фиг.8 – микрофотографии «модифицированных» электродов после модификации La2NiO4; на фиг.9 – микрофотографии «модифицированных» электродов после модификации Pr2NiO4; на фиг.10 - годографы импеданса для симметричных ячеек La2NiO4 | Ce0.8Sm0.2O1.9 | La2NiO4.

Данные таблицы иллюстрируют результаты расчета скоростей лимитирующих стадий обмена кислорода материалов электродов и модифицирующих добавок с кислородом газовой фазы, а также поляризационное сопротивление электродов без модифицирующей добавки и с ее использованием.

Экспериментальную проверку заявленного способа осуществляли следующим образом. В качестве модифицирующих добавок использовали оксидные материалы SmBaCo2O6–δ и PrBaCo2O6–δ. Известно, что электрохимическая активность электродов напрямую зависит от скорости протекания реакции обмена и диффузии кислорода по поверхности и объему материала. Для определения величины скорости обмена кислорода, а также выявления лимитирующей стадии процесса применяли метод изотопного обмена с уравновешиванием изотопного состава кислорода в газовой фазе. Взаимодействие кислорода в газовой фазе с поверхностью оксидных материалов SmBaCo2O6–δ и PrBaCo2O6–δ изучалось методом изотопного обмена с уравновешиванием кислорода изотопного состава в газовой фазе (QMS IE-GPE) с использованием статической циркуляционной установки [3]. Измерения проводились в температурном диапазоне 600-850°C и в диапазоне давления кислорода 1.3⋅10-3–6.6⋅10-2 атм. Расчеты скоростей диссоциативной адсорбции и инкорпорирования кислорода проводились по двухступенчатой модели, выбор модели и подробное описание расчетов приведено в работе [4]. Из зависимости скорости диссоциативной адсорбции и инкорпорирования от давления кислорода для PrBaCo2O6–δ и SmBaCo2O6–δ, представленных на фиг.1 и 2, видно, что скорости этих процессов возрастают с увеличением температуры и давления эксперимента. Для оксида SmBaCo2O6–δ лимитирующей стадией процесса обмена кислорода является скорость инкорпорирования поскольку ri < ra для всех условий эксперимента. В то время как лимитирующая стадия для оксида PrBaCo2O6–δ иная - диссоциативная адсорбция кислорода, поскольку ri > ra. Выявление природы лимитирующей стадии процесса обмена кислорода позволит вводить в электродный материал модифицирующую добавку таким образом, чтобы увеличить скорость этой реакции, тем самым повысить электрохимическую активность электрода в целом, соблюдая при этом условие изоструктурности материалов добавки и электрода.

Идея модифицирования поверхности электродов заключалась в пропитке электродов смесью солей, которая после термического разложения при 900°С будет давать фазу: в одном случае SmBaCo2O6–δ для электрода на основе фазы SmBaCo2O6–δ, а в другом случае каталитически активная добавка PrBaCo2O6–δ для электрода на основе фазы SmBaCo2O6–δ . Оксид PrBaCo2O6–δ отличается от SmBaCo2O6–δ лимитирующей стадией обмена кислорода. Для Sm – это инкорпорирование, тогда как для Pr стадия инкорпорирования не является лимитирующей. Таким образом, после термического разложения пропитанных электродов (концентрации растворов и степень пропитки по массе были абсолютно одинаковыми) образовались «модифицированные электроды». Из микрофотографий этих электродов, представленных на фиг. 3-5 видно, что на поверхности исходных электродов после пропитки и разложений солей образовались мелкие субмикронные фазы SmBaCo2O6–δ и PrBaCo2O6–δ, соответственно. Из годографов импеданса при температуре 600°С для двух симметричных ячеек SmBaCo2O6–δ | Ce0.8Sm0.2O1.9 | SmBaCo2O6–δ, представленных на фиг. 6, видно, что пропитка электрода с помощью состава для образования фазы PrBaCo2O6–δ практически на порядок снизило поляризационное сопротивление электродов. Таким образом, можно сформулировать общий принцип выбора модифицирующего состава пропитки с последующим обжигом для улучшения электрохимической активности электродов: лимитирующая стадия обмена модифицирующей добавки должна быть выше от лимитирующей стадии обмена кислорода материала электрода, при этом структура формируемой фазы после пропитки должна быть изоморфной.

Этот принцип иллюстрируется на примере электродов на основе никелита лантана La2NiO4. В этом случае были выбраны два состава пропитывающего раствора: один соответствовал химическому составу исходного оксидного электрода, другой – отвечал никелиту празеодима. Из микрофотографий «модифицированных электродов», представленных на фиг. 7-9 и годографов импеданса для симметричных ячеек La2NiO4 | Ce0.8Sm0.2O1.9 | La2NiO4, представленных на фиг.10, наблюдается картина, которая была характерна для электродов со структурой двойного перовскита. А именно, введение добавки, отличающейся скоростью лимитирующей стадии обмена кислорода, приводит к более низкому поляризационному сопротивлению электрода.

Таким образом, полученные результаты однозначно демонстрируют, что выбор модифицирующей добавки по результатам анализа скорости лимитирующей стадии электродного процесса добавки и матрицы при условии изоструктурности материалов добавки и электродного материала, исключает рутинный выбор модифицирующей добавки, а также деградацию электродов во времени.

Источники информации

[1] Бронин Д.И. Кинетика электродных процессов в электрохимических системах с твердыми оксидными электролитами, диссертация на соискание ученой степени доктора химических наук, 2007, С. 283.

[2] А.с.СССР №1825575, МПК4 H01M 4/48, Электродная масса для электрохимических устройств / Неуймин А. Д, Федин В. В, Журавлев Б. В, Кожевникова Т. Р, Богданович Н. М, Хомякова Н. Г, Майзнер Е. А., заявители: «Институт электрохимии Уральского отделения АН СССР» и «Восточный научно-исследовательский проектный институт огнеупорной промышленности» - № 4838973/07, заявл. 07.06.1990; опубл. 20.02.2003 Бюл. № 5.

[3] Пат. 144462 Российская Федерация, МПК7 G0N30/96, Устройство для исследования кинетики межфазного обмена в системе "газ-твердое тело" с анализом изотопного состава газовой фазы / Курумчин Э.Х., Ананьев М.В., Поротникова Н.М., Еремин В.А., Фарленков А.С., заявитель и патентообладатель «Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук» - № 2014114025/28, заявл. 09.04.2015; опубл. 20.08.2014 Бюл. № 23.

[4] M.V.Ananyev, V.A.Eremin, D.S.Tsvetkov, N.M.Porotnikova, A.S.Farlenkov, A.Yu.Zuev, A.V.Fetisov, E.Kh.Kurumchin // Solid State Ionics Volume 304, June 2017, Pages 96-106.


Способ модификации электродных материалов
Способ модификации электродных материалов
Способ модификации электродных материалов
Способ модификации электродных материалов
Способ модификации электродных материалов
Источник поступления информации: Роспатент

Showing 41-50 of 94 items.
10.05.2016
№216.015.3b48

Материал для кислородного электрода электрохимических устройств

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит...
Тип: Изобретение
Номер охранного документа: 0002583838
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c7e

Способ измерения влажности воздуха

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и...
Тип: Изобретение
Номер охранного документа: 0002583164
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.46b6

Химический способ получения искусственных алмазов

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике. Синтез алмазов осуществляют в расплавленной металлической матрице при непосредственном...
Тип: Изобретение
Номер охранного документа: 0002586140
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
Showing 1-10 of 10 items.
27.02.2015
№216.013.2c14

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002542752
Дата охранного документа: 27.02.2015
20.08.2015
№216.013.6f9b

Способ определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах со смешанной электронной и кислород-ионной проводимостью. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002560141
Дата охранного документа: 20.08.2015
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
13.01.2017
№217.015.76c6

Способ определения кинетических параметров, характеризующих процесс обмена кислорода газовой фазы с оксидными материалами

Изобретение направлено на создание возможности определения скорости межфазного обмена кислорода и скоростей трех типов обмена кислорода с оксидными материалами. Образец исследуемого материала помещают в проточный реактор, пропускают смесь инертного газа с кислородом заданного парциального...
Тип: Изобретение
Номер охранного документа: 0002598701
Дата охранного документа: 27.09.2016
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
17.02.2018
№218.016.2a37

Электрохимический способ нанесения электропроводящего оксидного защитного покрытия интерконнектора

Изобретение относится к технологиям нанесения электропроводного покрытия на интерконнекторы катодной камеры твердооксидных топливных элементов. Способ включает электроосаждение слоя из La и 3d-металлов Mn, Co, Cu, Ni из раствора хлоридов используемых металлов в протофильном протонном...
Тип: Изобретение
Номер охранного документа: 0002643032
Дата охранного документа: 30.01.2018
06.07.2018
№218.016.6cc7

Способ соединения трубчатых топливных элементов

Изобретение относится к технологиям сборки конструкции подблоков трубчатых топливных элементов. Способ включает последовательное соединение топливных элементов, содержащих несущую основу из электролита и нанесенные на нее слои электродов, посредством интерконнектора в виде ступенчатого кольца...
Тип: Изобретение
Номер охранного документа: 0002660124
Дата охранного документа: 05.07.2018
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
24.05.2019
№219.017.5dcc

Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин...
Тип: Изобретение
Номер охранного документа: 0002688944
Дата охранного документа: 23.05.2019
05.09.2019
№219.017.c6fa

Способ получения остеопластического керамического материала на основе фосфата кальция

Изобретение относится к области неорганической химии, а именно к получению материалов на основе стронций-замещенного β-трикальцийфосфата, которые могут быть использованы в качестве тканеинженерных остеопластических материалов для аугментации дефектов трабекулярной костной ткани. На основу из...
Тип: Изобретение
Номер охранного документа: 0002699093
Дата охранного документа: 03.09.2019
+ добавить свой РИД