×
20.11.2015
216.013.92b2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРОТОНОВ В ПРОТОН-ПРОВОДЯЩИХ ОКСИДНЫХ МАТЕРИАЛАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в том, что образец оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C. Затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида. При этом в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы. Далее откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па. Затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде. Техническим результатом является повышение степени осушки исследуемых образцов, повышение точности измерения концентрации протонов в атмосфере сухого водорода, а также сокращение расхода водорода. 2 ил.
Основные результаты: Способ определения концентрации протонов в протон-проводящих оксидах, в котором образец исследуемого оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C, затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида, отличающийся тем, что в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы, откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па, затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде.

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода.

Известен способ определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере «вода-водород», то есть в атмосфере влажного водорода, включающий использование метода термогравиметрического анализа с генератором водяного пара (Kreuer, K.D. Proton-Conducting Oxides. Annual Review of Material Research (2003) 33: 333-359) [1]. Согласно этому способу, исследуемый образец оксидного протон-проводящего материала помещают в реактор, соединенный с газовым контуром термоанализатора, сообщающимся с атмосферой, до начала эксперимента по растворимости водорода образец исследуемого материала сушат, продувая воздух или кислород над образцом через трубку с каким-либо из адсорбентов водяного пара, например цеолитами, пентоксидом фосфора и др. Температура осушки составляет 900÷1000°C. После осушки посредством регуляторов расхода газов проточную систему «реактор-газовый контур» продувают газовой смесью, содержащей водород и водяные пары, создаваемые парогенератором. Задавая скорость движения газов с помощью регуляторов расхода газов, можно добиться получения смеси с необходимым соотношением концентраций водорода и паров воды.

В результате происходит растворение водорода в оксиде, что влечет за собой увеличение массы образца. С помощью весов регистрируют изменение массы образца во времени, дожидаясь состояния равновесия, а затем производят расчет концентрации протонов в оксиде, численно равной количеству вещества протонов в одном моле оксида. Использование в качестве осушителей адсорбентов водяного пара, таких как цеолиты, пентоксид фосфора и других, позволяет получить остаточное давление водяных паров не менее нескольких единиц, а то и десятков паскалей, что бывает крайне недостаточно для полной осушки образцов, особенно для тех, в которых растворимость водорода довольно низкая. Не досушенные таким образом образцы могут содержать растворенный водород, что может привести к существенному «занижению» результатов измерений.

Кроме того, проточная система «реактор-газовый контур» требует большого расхода газов для длительной продувки водородсодержащей смеси при организации эксперимента.

Описанный способ с использованием метода термогравиметрического анализа позволяет определять концентрацию протонов в атмосфере влажного водорода, однако не дает возможности провести измерения в атмосфере сухого водорода, т.е. не содержащего пары воды, поскольку технически невозможно в достаточной степени высушить газовый контур, термоанализатор, а также газовые магистрали. Таким образом, всегда остается слабо контролируемое количество воды, точное количество которой определить практически невозможно.

Задача настоящего изобретения заключается в создании возможности измерения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода при повышении точности измерения концентрации протонов за счет глубокой степени осушки образца, а также в снижении расхода водорода.

Для решения поставленной задачи в способе определения концентрации протонов в протон-проводящих оксидных материалах образец исследуемого оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C, затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида, отличающийся тем, что в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы, откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па, затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде.

В отличие от способа по прототипу с применением метода термогравиметрического анализа, где в качестве параметра, напрямую указывающего на изменение концентрации протонов в протон-проводящем оксиде, используется изменение массы образца во времени, добиваясь состояния равновесия образца с газовой фазой, в заявленном способе в качестве такого параметра используется величина давления водорода над образцом в замкнутом газовом контуре постоянного объема. Метод релаксации давления водорода заключается в том, что вначале проводят глубокую осушку образца протон-проводящего оксида, для этого образец нагревают до температуры 900÷1100°C и выдерживают при постоянной откачке на высокий вакуум, оставляя открытым вакуумплотное соединение, добиваясь установления остаточного давления не более 10-7 Па. Затем вакуумплотное соединение перекрывают и в оставшуюся часть контура напускают водород высокой чистоты до заданного давления, после чего вакуумплотное соединение открывают. Величина давления, которую задают для проведения измерений, может быть любой в диапазоне от 10-1 до 105 Па.

В результате после мгновенного установления общего давления водорода в системе «реактор-газовый контур» происходит медленное растворение водорода в протон-проводящем оксиде, при этом водород проникает в образец оксида, а давление водорода уменьшается.

Таким образом, с помощью метода релаксации давления водорода регистрируют изменение во времени значения давления водорода, напрямую связанного с изменением количества протонов в оксиде, так как образец находится в замкнутом газовом контуре постоянного объема. Однако, в отличие от метода термогравиметрического анализа, где используют проточную систему для продувки водородсодержащей газовой смеси, метод релаксации давления водорода реализуют с использованием реактора, вакуумплотно соединенного с газовым контуром, изолированным от атмосферы, в котором можно создать высокий вакуум и любое давление водорода в диапазоне от 10-1 до 105 Па. Откачка газового контура с реактором на высокий вакуум при открытом вакуумплотном соединении реактора с газовым контуром позволяет произвести осушку образца протон-проводящего оксида при температуре 900÷1100°C до остаточного давления 10 Па, что существенно ниже по сравнению с сушкой в проточной системе в атмосфере воздуха над адсорбентами водяного пара, такими как цеолиты, пентоксид фосфора и др. Это предотвращает искажение результатов измерений, обусловливаемое недостаточной осушкой образцов, что важно особенно для образцов с низкой растворимостью водорода.

Вакуумплотно перекрывая сообщение реактора с газовым контуром и напуская в контур водород высокой чистоты, задают необходимое давление водорода над образцом после открытия вакуумплотного соединения.

Использование водорода высокой чистоты вместо водородсодержащей смеси, применяемой в термогравиметрическом методе анализа, позволяет проводить измерение в атмосфере сухого водорода. В методе релаксации давления парциальное давление водорода равно абсолютному, поэтому в заявленном способе применим датчик общего давления, работающий с абсолютными давлениями при комнатной температуре. Это позволяет регистрировать изменения давления водорода в атмосфере сухого водорода. Использование для реализации метода релаксации замкнутого газового контура, изолированного от атмосферы с возможностью его откачивания на высокий вакуум, позволяет экономно расходовать водород.

Таким образом, новый технический результат, достигаемый заявленным способом, заключается в повышении степени осушки исследуемых образцов, повышении точности измерения концентрации протонов в атмосфере сухого водорода, сокращении расхода водорода.

Изобретение иллюстрируется чертежами, где на фиг.1 приведена принципиальная схема экспериментальной установки для реализации способа; на фиг.2 приведена кривая зависимости давления от времени, иллюстрирующая метод релаксации давления.

Экспериментальная установка состоит из двух частей: газовый контур 1, который посредством вакуумного крана 2 вакуумплотно соединен с кварцевым реактором 3. В реактор 3 помещают образец 4. Реактор помещен в печь (не показана). Газовый контур 1 имеет трехступенчатую систему откачки. Откачку на форвакуум осуществляют с помощью диафрагменного насоса 5, остаточное давление при этом составляет порядка 10-1 Па. Вторую ступень откачки осуществляют с помощью турбомолекулярного насоса 6, остаточное давление при этом составляет порядка 10-5 Па. Третью ступень откачки осуществляют с помощью высоковакуумного магниторазрядного насоса 7, при этом достигается остаточное давление порядка 10-8 Па. Установка содержит датчики давления Баярда-Альперта Пирани 8, систему напуска водорода 9, баллон с кислородом высокой чистоты 10.

Давление газа в контуре 1 измеряли с помощью датчиков Баярда-Альперта Пирани 8, откалиброванных на диапазон давлений от 10-8 до 105 Па. Напуск водорода в контур 1 осуществляли с помощью системы напуска 9 из баллона 10. Для вакуумплотного соединения реактора с газовым контуром использовали вакуумные краны типа All-Metal UHV Valves с натеканием по гелию не более чем 10-4 Па·см3/с. Работу печи реактора 3 обеспечивали с помощью терморегулятора Термодат-19Е5. Тип использованной термопары - ТПП.

В ходе эксперимента использовали водород высокой чистоты. После размещения исследуемого образца в реакторе при комнатной температуре проводили откачку газового контура на высокий вакуум.

До начала эксперимента по реализации метода релаксации давления водорода проводили глубокую осушку образца протон-проводящего оксида. Для этого образец нагревали до температуры 900°C и выдерживали в течение трех-четырех суток при постоянной откачке на высокий вакуум, оставляя открытым вакуумплотное соединение, добиваясь остаточного давления не более 10-7 Па. Затем вакуумплотное соединение перекрывали и в оставшуюся часть контура напускали водород высокой чистоты до нужного давления. После этого вакуумплотное соединение открывали и регистрировали изменение во времени значения давления водорода (фиг. 2), добиваясь состояния равновесия образца оксида с газовой фазой. Критерием установившегося состояния равновесия служило значение стандартного отклонения давления для 1000 последних записанных точек от их среднего значения, которое не превышало 1 Па. На основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом, производят расчет концентрации протонов в протон-проводящем оксиде, как количества вещества водорода в оксиде, отнесенного к одному молю оксида.

Момент открытия реактора считается началом эксперимента с применением метода релаксации давления водорода.

Заявленный способ позволяет расширить диапазон средств для измерения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода, повысить точность измерения концентрации протонов за счет глубокой степени осушки образца, сократить расход водорода.

Способ определения концентрации протонов в протон-проводящих оксидах, в котором образец исследуемого оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C, затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида, отличающийся тем, что в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы, откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па, затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРОТОНОВ В ПРОТОН-ПРОВОДЯЩИХ ОКСИДНЫХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРОТОНОВ В ПРОТОН-ПРОВОДЯЩИХ ОКСИДНЫХ МАТЕРИАЛАХ
Источник поступления информации: Роспатент

Showing 1-10 of 96 items.
10.04.2013
№216.012.338a

Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора

Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включает реверсирование постоянного тока. При этом...
Тип: Изобретение
Номер охранного документа: 0002478737
Дата охранного документа: 10.04.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5e1a

Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах

Изобретение относится к аналитической технике, в частности к датчикам, предназначенным для анализа газовых сред и металлических расплавов на кислородосодержание. Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах содержит выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002489711
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.619f

Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды,...
Тип: Изобретение
Номер охранного документа: 0002490623
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6a7f

Молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002492914
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.75f2

Твердый электролит на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к твердооксидным композитным электролитам, и может быть использовано в средне- и высокотемпературных электрохимических устройствах. Твердый электролит на основе оксида церия и церата бария, допированный самарием, имеет состав, отвечающий...
Тип: Изобретение
Номер охранного документа: 0002495854
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8875

Электрохимический способ получения графена

Изобретение может быть использовано в электрохимических и электрофизических устройствах. Осуществляют анодную гальваностатическую поляризацию титана или циркония с плотностью тока от 0,1 до 3,0 мА·см в расплаве хлоридов щелочных металлов, содержащем от 0,1 до 1,0 мас.% порошка карбида бора при...
Тип: Изобретение
Номер охранного документа: 0002500615
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e5a

Способ получения газоплотной керамики на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью. Заявлен способ получения газоплотной керамики на основе оксида церия и церата бария путем спекания порошков состава...
Тип: Изобретение
Номер охранного документа: 0002506246
Дата охранного документа: 10.02.2014
Showing 1-10 of 63 items.
10.04.2013
№216.012.338a

Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора

Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включает реверсирование постоянного тока. При этом...
Тип: Изобретение
Номер охранного документа: 0002478737
Дата охранного документа: 10.04.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5e1a

Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах

Изобретение относится к аналитической технике, в частности к датчикам, предназначенным для анализа газовых сред и металлических расплавов на кислородосодержание. Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах содержит выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002489711
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.619f

Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды,...
Тип: Изобретение
Номер охранного документа: 0002490623
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6a7f

Молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002492914
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.75f2

Твердый электролит на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к твердооксидным композитным электролитам, и может быть использовано в средне- и высокотемпературных электрохимических устройствах. Твердый электролит на основе оксида церия и церата бария, допированный самарием, имеет состав, отвечающий...
Тип: Изобретение
Номер охранного документа: 0002495854
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8875

Электрохимический способ получения графена

Изобретение может быть использовано в электрохимических и электрофизических устройствах. Осуществляют анодную гальваностатическую поляризацию титана или циркония с плотностью тока от 0,1 до 3,0 мА·см в расплаве хлоридов щелочных металлов, содержащем от 0,1 до 1,0 мас.% порошка карбида бора при...
Тип: Изобретение
Номер охранного документа: 0002500615
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e5a

Способ получения газоплотной керамики на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью. Заявлен способ получения газоплотной керамики на основе оксида церия и церата бария путем спекания порошков состава...
Тип: Изобретение
Номер охранного документа: 0002506246
Дата охранного документа: 10.02.2014
+ добавить свой РИД