×
13.10.2018
218.016.91ca

Результат интеллектуальной деятельности: Способ формирования серебросодержащего биосовместимого покрытия на титановых имплантатах

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для формирования серебросодержащего биосовместимого покрытия на титановых имплантатах. Для этого проводят получение покрытия путем предварительной механической обработки титановой основы, очистки поверхности, химического обезжиривания, процесса плазменного напыления покрытия с последующей имплантацией в него ионов серебра (Ag). После обезжиривания полированную поверхность титановой основы сначала обрабатывают пучком ионов гелия с внедрением ионов гелия в титановую основу и формированием пористой структуры на поверхности имплантата, при этом внедрение ионов гелия (Не) проводят с энергией 100-200 кэВ и дозой 6⋅10-6⋅10 ион/см, затем сформированную пористую структуру обрабатывают пучком ионов серебра (Ag) в вакуумной среде углекислого газа (СО) с внедрением ионов серебра (Ag) в сформированную пористую структуру поверхности титана с образованием углеродной серебросодержащей алмазоподобной беспористой пленки с антимикробными свойствами, при этом имплантацию ионов серебра проводят с энергией 100-150 кэВ и дозой облучения (1-4)⋅10 ион/см. Изобретение обеспечивает повышение остеоинтеграционных свойств внутрикостных титановых имплантатов путем создания серебросодержащего биосовместимого покрытия с антимикробными свойствами. 2 ил., 1 табл., 2 пр.

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных имплантатов на титановой основе.

Известен способ формирования антимикробного покрытия, заключающийся в подготовке серебросодержашего раствора, предварительной подготовке поверхности имплантата и формировании покрытия [патент РФ №2504349, МПК A61F 2/30, A61K 33/06, А61З 31/04, C23C 4/12, опубликован 20.01.2014]. Способ осуществляется предварительной подготовкой серебросодержащего раствора, пропиткой порошка гидроксиапатита полученным серебросодержащим раствором, подготовкой поверхности имплантата с нанесением титанового подслоя, а затем формированием серебросодержащего покрытия электроплазменным напылением слоя гидроксиапатита, пропитанного серебросодержащим раствором.

Недостатком данного способа является то, что получаемое покрытие имеет слаборазвитую морфологию поверхности и получение серебросодержащего покрытия происходит при трудно контролируемых параметрах технологической операции пропитки частиц гидроксиапатита раствором AgNO3, что классифицирует способ как трудно воспроизводимый с низким выходом годных изделий. Процесс электроплазменного напыления происходит при высокой температуре (~10000°C), а температура плавления серебра на порядок меньше (961,8°C), что в итоге снижает антимикробные свойства получаемого биосовместимого покрытия.

Наиболее близким к предлагаемому решению является способ формирования серебросодержащего биопокрытия титанового имплантата [патент РФ №2581825, МПК A61L 27/32, A61L 27/06, A61L 27/30, опубликован 20.04.2016], заключающийся в предварительной подготовке поверхности основы имплантата, включающей механическую обработку титановой основы, очистку поверхности и химическое обезжиривание, плазменном напылении титанового подслоя на поверхность титана, плазменном напылении порошка гидроксиапатита на титановый подслой и формирование серебросодержащего биосовместимого покрытия имплантацией ионов серебра в слой гидроксиапатита с энергией 50±5 кэВ и дозой 1,2⋅1016-1,8⋅1016 ион/см2.

Недостатком данного способа является то, что получаемое покрытие имеет слаборазвитую морфологию поверхности; слой гидроксиапатита имеет низкую прочность сцепления с титановой основой имплантата, что снижает остеоинтеграционные свойства.

Техническая проблема заявляемого изобретения заключается в необходимости создания технологических условий для формирования серебросодержащего биосовместимого покрытия на титановых имплантатах.

Технический результат заключается в повышении остеоинтеграционных свойств внутрикостных титановых имплантатов путем создания серебросодержащего биосовместимого покрытия с антимикробными свойствами.

Поставленная проблема решается тем, что при осуществлении способа формирования серебросодержащего биосовместимого покрытия на титановых имплантатах, заключающемся в получении покрытия путем предварительной механической обработки титановой основы, очистки поверхности, химического обезжиривания, процесса плазменного напыления покрытия с последующей имплантацией в него ионов серебра (Ag+), новым является то, что после обезжиривания полированную поверхность титановой основы сначала обрабатывают пучком ионов гелия с внедрением ионов гелия в титановую основу и формированием пористой структуры на поверхности имплантата, при этом внедрение ионов гелия (Не+) проводят с энергией 100-200 кэВ и дозой 6⋅1017-6⋅1018 ион/см2, затем сформированную пористую структуру обрабатывают пучком ионов серебра (Ag+) в вакуумной среде углекислого газа (CO2) с внедрением ионов серебра (Ag+) в сформированную пористую структуру титана с образованием углеродной серебросодержащей алмазоподобной беспористой пленки с антимикробными свойствами, при этом имплантацию ионов серебра проводят с энергией 100-150 кэВ и дозой облучения (1-4)⋅1017 ион/см2.

Изобретение поясняется чертежами, где на фиг. 1 показаны схема технологии формирования и поперечное сечение серебросодержащего биосовместимого покрытия на пористой поверхности титанового имплантата, состоящего из пористой поверхности титана, полученной внедрением ионов гелия с энергией 100-200 кэВ и дозой 6⋅1017-6⋅1018 ион/см2 и ионно-внедренного серебросодержащего слоя, полученного при имплантации ионов серебра в полученную пористую (блистеринговую) поверхность с энергией 100-150 кэВ и дозой облучения (1-4)⋅1017 ион/см2, где 1 - титановая основа имплантата, 2 - блистеринговый (пористый слой титана), 3 - поры титана, с серебросодержащим биосовместимым покрытием с антимикробными свойствами; на фиг. 2 представлена фотография типовой пористой (блистеринговой) поверхности титана . Способ осуществляют следующим образом.

Изготавливают основу внутрикостного имплантата из титана методами токарной и фрезерной обработки, химической полировки.

Проводят очистку поверхности титановой основы имплантата и химическое обезжиривание.

Поверхность титановой основы обрабатывают пучком ионов гелия (Не+) с имплантацией ионов гелия (Не+) в титановую основу и формированием пористой (блистеринговой) структуры на поверхности имплантата на установке ионного легирования, например, «Везувий-5».

Имплантацию ионов гелия проводят с энергией 100-200 кэВ и дозой 6⋅1017-6⋅1018 ион/см2.

Гелий подают из баллона в камеру источника ионов установки ионного легирования, например, «Везувий-5», где происходит ионизация гелия эмитированными горячим (2500…3000°C) катодом электронами.

Из образующегося плазменного облака ионы гелия (Не+) отбирают (вытягивают) электрическим полем с вытягивающим напряжением, оптимальными значениями для ионов гелия (Не+) являются Uвыт.=5, 10, 15 кВ.

Вытягивающийся из источника ионный (Не+) пучок фокусируют, ускоряют и он попадает на поверхность титановых имплантатов, которые закреплены на барабане в приемной камере, в объеме которой создают вакуум до ~10-6 мм рт.ст. с помощью механических и высоковакуумных насосов, который фиксируют термопарным и ионизационным датчиками вакуума и вакуумметром. Дозиметры, установленные в приемной камере, обеспечивают контроль над дозой имплантации, технологические параметры процесса имплантации задаются ЭВМ установки ионного легирования.

При имплантации легких ионов гелия (Не+) в поверхность титана (фиг. 1), в ней возникают дефекты (блистеры) - будущие поры - с характерными размерами (несколько мкм) и большой степенью регулярности (Гусева М.И., Мартыненко Ю.В. Радиационный блистеринг / М.И. Гусева, Ю.В. Мартыненко // Успехи физических наук. Москва: 1981. - Т. 135. - Вып. 4. - 671-689 с.).

При достижении пороговой дозы имплантируемых ионов гелия (Не+) 6⋅1016-6⋅1017 ион/см2 происходит вскрытие крышек блистеров и образование пор в поверхности титановой основы (фиг. 2). Таким образом, формируется пористая структура поверхности титановой основы имплантата с размером пор 100-250 мкм.

Размеры пор находятся в пределах от d~100-250 мкм с плотностью N~1016-1017 см-3 (Тетельбаум Д.И. Ионная имплантация / Д.И. Тетельбаум // Москва: Вестник Нижегородского университета им. Н.И. Лобачевского, 2010. - №5(2). - 250-259 с.) и определяются энергией и дозой имплантации ионов гелия в титановую основу.

Экспериментально полученными оптимальными дозами ионов гелия (Не+), необходимыми для проведения процесса порообразования в процессе ионной имплантации, т.е. внедрения ионов гелия (Не+) в поверхность титановой основы внутрикостного имплантата с целью образования дефектов (блистеров), вскрытия крышек блистеров и образования пор в поверхности титановой основы, являются 6⋅1017-6⋅1018 ион/см2 с энергией Е=100-200 кэВ. При дозах ионов гелия менее 6⋅1017-6⋅1018 ион/см2 и более 6⋅1017-6⋅1018 ион/см2 не происходит формирования плотной пористой структуры поверхности титановой основы на основе явления блистеринга, снижаются остеоинтеграционные свойства титанового внутрикостного имплантата.

Сформированную пористую структуру поверхности титановой основы имплантата обрабатывают в вакуумной среде углекислого газа (CO2) пучком ионов серебра с внедрением ионов серебра в сформированную пористую структуру титана с образованием углеродной серебросодержащей алмазоподобной беспористой пленки с антимикробными свойствами на установке ионного легирования, например, «Везувий-5».

Для этого в объеме приемной камеры установки ионного легирования создают вакуум ~10-6 мм рт.ст. с помощью высоковакуумных насосов, который фиксируют ионизационным датчиком высокого вакуума и вакуумметром, далее в приемную камеру через игольчатый клапан из баллона по герметичному трубопроводу подают углеросодержащий газ, например, оксид углерода (CO2), при этом давление в камере автоматически изменяют в сторону повышения, но не более 10-4 мм рт.ст., потому что в более низком вакууме на поверхности адсорбируется сажевое образование, что является недопустимым, и не менее 5⋅10-5 мм рт.ст., потому что при таком значении вакуума уменьшается скорость адсорбции молекул углеродсодержащей среды (CO2), что замедляет процесс образования сплошного слоя углеродосодержащих молекул, необходимого для образования углеродной алмазоподобной беспористой пленки. Оптимальным диапазоном давления (вакуума) для образования углеродной алмазоподобной беспористой пленки является 10-4-5⋅10-5 мм рт.ст. Данный процесс повторяется постоянно с целью поддержания заданной величины давления в объеме приемной камеры установки вплоть до завершения набора дозы ионов серебра. Полученные промышленным способом кристаллы нитрата серебра (AgNO3) помещают в камеру испарения источника ионов установки ионного легирования, например «Везувий-5», где происходит ионизация нитрата серебра (AgNO3) с образованием ионов серебра эмитированными горячим (2500…3000°C) катодом электронами.

Из образующегося в источнике ионов плазменного облака, ионы (Ag+) отбирают (вытягивают) электрическим полем с вытягивающим напряжением, оптимальными значениями для ионов серебра являются Uвыт.=5, 10, 15 кВ.

Вытягивающийся из источника ионный (Ag+) пучок фокусируют, ускоряют и он попадает на пористую поверхность титана, сформированную в процессе блистерингового порообразования, то есть при внедрении ионов гелия в поверхность титановых имплантатов, которые закреплены на барабане в вакуумной среде углекислого газа приемной камеры.

Имплантацию ионов серебра проводят с энергией 100-150 кэВ и дозой облучения (1-4)⋅1017 ион/см2. При дозах ионов серебра за пределами указанного диапазона антимикробные свойства серебросодержащего слоя не проявляются.

Пример 1. Берут предварительно подготовленный для формирования покрытия имплантат из титана ВТ 1-00, помещают его в приемную камеру установки ионного легирования, где обрабатывают поверхность титановой основы пучком ионов гелия (Не+) с энергией 100 кэВ и дозой 6⋅1017 ион/см2, формируя, тем самым, пористую (блистеринговую) структуру на поверхности имплантата с d пор ~ 100-250 мкм с плотностью N~1016-1017 см-3. Затем сформированную пористую поверхность титановой основы имплантата обрабатывают в вакуумной среде углекислого газа (CO2) пучком ионов cepe6pa(Ag+) с энергией 100 кэВ и дозой облучения 1⋅1017 ион/см2.

В результате, в таких технологических условиях на поверхности титанового имплантата формируется серебросодержащее биосовместимое покрытие

Пример 2. Берут предварительно подготовленный для формирования покрытия имплантат из титана ВТ1-0, помещают его в приемную камеру установки ионного легирования, где обрабатывают поверхность титановой основы пучком ионов гелия (Не+) с энергией 200 кэВ и дозой 6⋅1018 ион/см2, формируя, тем самым, пористую (блистеринговую) структуру на поверхности имплантата с d пор ~ 100-250 мкм с плотностью N~1016-1017 см-3. Затем сформированную пористую поверхность титановой основы имплантата обрабатывают в вакуумной среде углекислого газа (CO2) пучком ионов cepe6pa(Ag+) с энергией 150 кэВ и дозой облучения 4⋅1017 ион/см2.

В результате при таких технологических условиях на поверхности титанового имплантата формируется серебросодержащее биосовместимое покрытие.

По данным вторичной ионной масс-спектрометрии (ВИМС), поверхность полученных титановых имплантатов с серебросодержащим биосовместимым покрытием характеризовалась распадом окислов, увеличением концентрации свободного кислорода и повышением концентрации углерода и углеродсодержащих соединений (углеводородов), значительным повышением концентрации серебра, причем концентрация углерода и серебра вырастала и в приповерхностном объеме титана (табл. 1).

Способ позволяет получить морфологически развитое серебросодержащее биосовместимое покрытие на титановых имплантатах с размером пор от 100 до 250 мкм с плотностью N~1016-1017 см-3 и антимикробными свойсвами, что будет способствовать быстрой и надежной остеоинтеграции имплантата с биологическими тканями.

Таким образом, разработан способ формирования серебросодержащего биосовместимого покрытия на титановых имплантатах, которое обладает развитой морфологией за счет создания пористой структуры поверхности титановой основы с применением процесса блистерингового порообразования, и антимикробными свойствами, которые обусловлены комплексом терапевтических свойств, присущих серебросодержащим покрытиям и препаратам серебра: широким антибактериальным спектром в отношении патогенной флоры, в том числе, устойчивой к антибиотикам; сложностью вырабатывания у патогенных микроорганизмов защитных механизмов к действию ионов серебра; выраженным ранозаживляющим действием, что будет способствовать быстрому и надежному приживлению имплантата в биологических тканях за счет наименьшего процента их отторжения.

Способ формирования серебросодержащего биосовместимого покрытия на титановых имплантатах, заключающийся в получении покрытия путем предварительной механической обработки титановой основы, очистки поверхности, химического обезжиривания, процесса плазменного напыления покрытия с последующей имплантацией в него ионов серебра (Ag), отличающийсятем, что после обезжиривания полированную поверхность титановой основы сначала обрабатывают пучком ионов гелия с внедрением ионов гелия в титановую основу и формированием пористой структуры на поверхности имплантата, при этом внедрение ионов гелия (Не) проводят с энергией 100-200 кэВ и дозой 6⋅10-6⋅10 ион/см, затем сформированную пористую структуру обрабатывают пучком ионов серебра (Ag) в вакуумной среде углекислого газа (СО) с внедрением ионов серебра (Ag) в сформированную пористую структуру поверхности титана с образованием углеродной серебросодержащей алмазоподобной беспористой пленки с антимикробными свойствами, при этом имплантацию ионов серебра проводят с энергией 100-150 кэВ и дозой облучения (1-4)⋅10 ион/см.
Способ формирования серебросодержащего биосовместимого покрытия на титановых имплантатах
Способ формирования серебросодержащего биосовместимого покрытия на титановых имплантатах
Источник поступления информации: Роспатент

Showing 11-20 of 164 items.
20.04.2016
№216.015.3621

Фотокаталитическое покрытие

Изобретение относится к химической промышленности, а именно к пленкам и покрытиям, фотокаталитически активным в видимой области спектра солнечного излучения. Описано Фотокаталитическое покрытие в виде композиционного материала. Композиционный материал состоит из двух слоев, нанесенных на...
Тип: Изобретение
Номер охранного документа: 0002581359
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.364e

Антисептическое средство

Изобретение относится к медицине и представляет собой антисептическое средство, включающее полиазолидинаммоний, модифицированный гидрат-ионами йода в количестве 15-25 мас.%, перекись водорода в количестве 1-10 мас.% и дистиллированную воду - остальное. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002581826
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.374c

Способ упрочнения изделий из титана и его сплавов

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом...
Тип: Изобретение
Номер охранного документа: 0002581688
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.375c

Способ поверхностного упрочнения и стабилизации маложестких изделий

Изобретение относится к машиностроению и может быть использовано для поверхностного упрочнения и стабилизации торсионных валов при обработке источниками с высокой концентрацией энергии. Способ поверхностного упрочнения торсионных валов включает изменение уровня лазерного теплового воздействия...
Тип: Изобретение
Номер охранного документа: 0002581691
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ced

Способ обработки кольцевой детали непрерывной обкаткой тремя валками

Изобретение относится к обработке кольцевой детали обкаткой. Устанавливают деталь между тремя валками, с помощью которых обеспечивают деформацию детали и ее непрерывную обкатку между ними. Максимальную величину деформации детали определяют из равенства: где D - диаметр наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002583520
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dbf

Способ стабилизации параметров колец шарикоподшипников

Изобретение относится к обработке дорожек качения колец шарикоподшипников. Осуществляют вращение кольца шарикоподшипника и прижатие к дорожке его качения шарикового раскатного инструмента. Ось шарикового раскатного инструмента совмещают с осью вращения кольца шарикоподшипника. Используют...
Тип: Изобретение
Номер охранного документа: 0002583510
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.50f1

Состав для получения стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок на основе гидроксилсодержащих полимеров для медицины, в частности к составам для получения пленок, и может быть использовано в стоматологии для лечения заболеваний пародонта. Предлагаемый состав для получения стоматологической...
Тип: Изобретение
Номер охранного документа: 0002595804
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.670e

Смесь для изготовления пенобетона

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент...
Тип: Изобретение
Номер охранного документа: 0002591996
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68cc

Способ и устройство для охлаждения стекловаренной печи

Изобретение относится к области производства листового стекла в регенеративных стекловаренных печах непрерывного действия, а именно к технике принудительного охлаждения огнеупорной кладки варочного бассейна стекловаренных печей. Техническим результатом настоящего изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002591995
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7390

Способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Изобретение относится к способу изготовления внутрикостного стоматологического имплантата. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002597750
Дата охранного документа: 20.09.2016
Showing 11-20 of 23 items.
20.04.2016
№216.015.357d

Способ формирования серебросодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Описан способ получения серебросодержащего биопокрытия титанового имплантата, заключающийся в предварительной...
Тип: Изобретение
Номер охранного документа: 0002581825
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35c5

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении...
Тип: Изобретение
Номер охранного документа: 0002581824
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.7390

Способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Изобретение относится к способу изготовления внутрикостного стоматологического имплантата. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002597750
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8b15

Способ формирования наноструктурированного биоинертного покрытия на титановых имплантатах

Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов. Способ включает воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование....
Тип: Изобретение
Номер охранного документа: 0002604085
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.aa48

Способ формирования оксидных покрытий на изделиях из титановых сплавов

Изобретение относится к технологии формирования оксидных покрытий на титановых изделиях технического и медицинского назначения, например элементах пар трения и метизных изделиях. Титановое изделие подвергают индукционному нагреву в воздушной атмосфере до температуры 700-800°С при частоте тока...
Тип: Изобретение
Номер охранного документа: 0002611617
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.da72

Способ химико-термической индукционной обработки малогабаритных изделий из альфа-титановых сплавов

Изобретение относится к металлургии, а именно к химико-термической обработке и упрочнению малогабаритных изделий конструкционного и медицинского назначения, например метизных изделий и стоматологических имплантатов, изготовленных из альфа-сплавов титана. Способ химико-термической индукционной...
Тип: Изобретение
Номер охранного документа: 0002623979
Дата охранного документа: 29.06.2017
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3d05

Способ формирования титановых пористых покрытий на титановых имплантатах

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций. Способ формирования титановых пористых покрытий на титановых имплантатах включает воздушно-абразивную...
Тип: Изобретение
Номер охранного документа: 0002647968
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3dd4

Способ изготовления электрически изолированных резисторов микросхем

Изобретение относится к микроэлектронике, а именно к способу изготовления электрически изолированных резисторов микросхем на арсениде галлия с высокой термостабильностью. Технический результат заключается в увеличении термостабильности и повышении пробивного напряжения изолирующих слоев...
Тип: Изобретение
Номер охранного документа: 0002648295
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.4604

Способ формирования наноструктурированного оксидного покрытия на техническом титане

Изобретение относится к области медицинской техники и приборостроения, а именно к технологии формирования наноструктурированных оксидных покрытий системы Ti-Ta-(Ti,Ta)O на изделиях из технического титана, в том числе имплантируемых внутрикостных конструкциях. Способ формирования...
Тип: Изобретение
Номер охранного документа: 0002650221
Дата охранного документа: 11.04.2018
+ добавить свой РИД