×
13.10.2018
218.016.9106

Способ определения составляющих импеданса биообъекта

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицине, может быть использовано для оценки функционального состояния организма. В качестве составляющих импеданса биологического объекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта. При этом на биообъект подают импульс стабилизированного тока I и измеряют напряжение U в момент времени t после начала импульса тока. Максимальное значение потенциала Е определяют по калибровочной характеристике. Калибровку проводят априори для двух значений напряжения: измеренных U и известных эталонных U, где i=1, 2, в два момента времени t и t=2t Калибровочной характеристикой служит функция максимального значения потенциала E компенсирующая неопределенность постоянной времени Т выбранной произвольно Т* и связывающая эталонную U и измеренную U характеристики определения импеданса за счет нормирования измеренных значений известными. Далее по значениям нижней Е и верхней Е границ диапазона калибровочной характеристики E находят действительные значения постоянной времени Т и максимальную величину потенциала Е по которым последовательно строят калибровочную характеристику Е и действительную U характеристику определения импеданса которая максимально приближена к эталонной U=U. С учетом рассчитанных значений Е и Т определяют составляющие импеданса R и С биологического объекта. Способ обеспечивает повышение точности определения действительной характеристики импеданса за счет калибровочной характеристики, компенсирующей неопределенность постоянной времени, выбранной произвольно. 4 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к медицине и может быть использовано для оценки функционального состояния организма.

Известен способ измерения электрических величин активного сопротивления, емкости и индуктивности [А.с. 1797079 СССР, МКИЗ G01R 27/18], согласно которому на последовательную активно-емкостную или активно индуктивную цепь подают напряжение постоянного тока. При этом один элемент цепи известен. После подачи напряжения через определенные промежутки времени Δt измеряют первое и второе мгновенные значения напряжения на средней точке измерительной цепи. Неизвестные элементы определяют соответственно по формулам для активно-емкостной и индуктивно-емкостной цепей.

Недостаток такого способа измерений сопротивлений в том, что он не позволяет измерить с достаточной точностью значения активной и реактивной составляющих комплексного сопротивления.

По способу определения составляющих импеданса биообъекта [см. А.с. СССР №1397024, МПК А61В 5/05, публ. 1988 г., Бил. №19] на биообъект накладывают электроды, через которые подается импульс тока определенной полярности и с амплитудой I0. Так как составляющая импеданса имеет емкостной характер, происходит переходной процесс нарастания напряжения. В моменты времени t1 и t2 измеряют напряжения U1 и U2. Измерение в момент t2 происходит тогда, когда емкость тканей заряжена полностью, т.е. переходной процесс закончился. Величина I0 выбирается такой, чтобы за время действия импульса тока произошел полный заряд емкости тканей. Тогда напряжение на биообъекте пропорционально величине активной составляющей импеданса биообъекта.

Недостатками являются: наличие динамической и методической погрешности и низкая оперативность, вызванная необходимостью ожидания установившегося режима.

Наиболее близким к заявленному техническому решению является способ определения составляющих импеданса биообъекта [Пат. РФ №2509531, МПК8 А61В 5/05, публ. 2014, Бюл. №5.], заключающийся в том, что на биообъект подается импульс тока I0 и измеряют напряжения в моменты времени t2=2t1. По измеренным значениям напряжения и моментам времени регистрируют информативные параметры: потенциал Е и постоянную времени Т, по которым определяют значение активного сопротивления и эквивалентную емкость тканей биообъекта.

Недостатком прототипа является то, что он рассчитан на случай, когда оба информативных параметра известны, но, как правило, на практике один из информативных параметров неизвестен.

Технической задачей является определение составляющих импеданса биообъекта при неизвестном информативном параметре - максимальном значении потенциала Е.

Данная техническая задача достигается тем, что: в способе определения составляющих импеданса биологического объекта, заключающемся в подаче на биообъект импульса стабилизированного тока I0 и измерении напряжения u в момент времени t после начала импульса тока, в качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость C тканей биообъекта, в отличие от прототипа максимальное значение потенциала Е определяют по калибровочной характеристике, калибровку проводят априори для измеренного Ui и известного Uэi значений напряжения (i=1, 2) в два момента времени t2=2t1, калибровочной характеристикой служит функция максимального значения потенциала Е0i, компенсирующая неопределенность постоянной времени T выбранной произвольно T*, и связывающая эталонную Uэi и измеренную Ui характеристики определения импеданса за счет нормирования измеренных значений известными, по калибровочной характеристике Е0i находят действительные значения постоянной времени T и максимальную величину потенциала E, по которым последовательно строят калибровочную характеристику Е0i и действительную U характеристику определения импеданса.

Сущность предлагаемого способа поясняется на фиг. 1÷2. Предлагаемый способ включает следующие этапы:

1. Определяют максимальное значение потенциала E по калибровочной функции E0i=E0i(t).

2. Калибровку проводят априори для известных эталонной Uэi ((фиг. 1, 1) и Ui (фиг. 1, 2) измеренной значений напряжения.

3. Калибровочной характеристикой служит функция E0i (фиг. 2, 3) максимальной величины потенциала E (фиг. 1, 3), компенсирующая неопределенность постоянной времени T, (фиг. 1, 4) выбранной произвольно T* (фиг. 1, 4а), и связывающая эталонную Uэ и измеренную U зависимости за счет нормирования измеренных значений известными:

По калибровочной характеристике Е0i (фиг. 2, 3) восстанавливают действительную характеристику U (фиг. 2, 4):

которая максимально приближена к эталонной Uэi (фиг. 2, 1):

Эталонная характеристика Uэi (фиг. 2, 1) и характеристика, ей тождественная, U (фиг. 2, 4) получены из экспоненциальной динамической характеристики с искомыми информативными параметрами T, Е:

где Т - постоянная времени (фиг. 1, 4) процесса и Е - максимальная величина потенциала (фиг. 1, 3). Физический смысл информативных параметров следует из предельных соотношений:

т.е. Е - максимальная величина потенциала для t=∞.

т.е. Т - постоянная времени, т.к.

На практике один из информативных параметров исследуемой характеристики, как правило, неизвестен. В этом случае один параметр выбираем произвольно T* (фиг. 1, 4а), а второй принимает вид функции E0i (фиг. 2, 3), которая компенсирует незнание первого информативного параметра T (фиг. 1, 4). По калибровочной функции E0i нормируется измеренная кривая Ui до тождественного эквивалента Uэi=U (фиг. 2, 1 и 4).

Задаем произвольно параметр T*=const (фиг. 1, 4а) вместо неизвестного действительного значения постоянной времени T (фиг. 1, 4). Для компенсации произвольности константы T* (фиг. 1, 4а) максимальное значение потенциала E (фиг. 1, 3) превратится в характеристику E0i (фиг. 2, 3), компенсирующую незнание постоянной времени T (фиг. 1, 4), где i - число измерений (i=1, 2).

Калибровочной функцией для неизвестных параметров T, Е служит динамическая характеристика E0i (фиг. 2, 3).

Калибровочную характеристику E0i выразим из системы уравнений с известными параметрами T, Е характеристики Uэi, являющейся эталонной (получено путем аппроксимации экспериментальных данных), и характеристики Ui, (фиг. 1, 2), измеренной с произвольной константой T* (фиг. 1, 4а) и характеристикой E0i:

В соответствии с закономерностями калибровки Uэi=Ui, следует калибровочная характеристика E0i (фиг. 2, 3), связывающая между собой эталонную Uэi (фиг. 1, 1) и измеренную Ui, (фиг. 1, 2) характеристики определения импеданса:

Следовательно, калибровочной характеристикой служит функция максимального значения потенциала Е0i (фиг. 2, 3), компенсирующая неопределенность значения постоянной времени Т (фиг. 1, 4), выбранной произвольно Т* (фиг. 1, 4а).

4. По калибровочной характеристике E0i (фиг. 2, 3) находят действительные значения потенциала E (фиг. 1, 3) и постоянной времени T (фиг. 1, 4), которые являются информативными параметрами, доставляющими оптимум калибровочной характеристике. Из уравнения (5) составим систему уравнений для i=1, 2:

Поделив одно уравнение системы (6) на другое и проэкспоненцировав, при условии t2=2t1, определяют алгоритм оптимизации постоянной времени Т:

Выразим Е из первого уравнения системы (6), подставив найденное Т:

5. По полученным информативным параметрам (7) и (8) строят характеристику U (5) (фиг. 2, 4), по которой находят действительную характеристику определения составляющих импеданса, тождественную эквиваленту (4) (фиг. 1, 1).

Адекватность предлагаемого способа физике эксперимента доказывает математическое моделирование действительной характеристики U (фиг. 2, 4), относительно эквивалента экспериментальной характеристики Uэ (фиг. 2, 1), по полученным значениям.

Проводят оценку адекватности полученных зависимостей по формуле определения относительной погрешности:

ее оценка представлена на фиг. 3.

Относительная погрешность моделирования не превышает 1.2⋅10-15.

Динамическая погрешность δизм (фиг. 4, 1) измеренной характеристики Ui увеличивается с течением времени с 0 до 75%:

Динамическая погрешность δд (фиг. 4, 2) действительной характеристики U не превышает 0,01.

Отклонения измеренных характеристик прототипа приводят к большой динамической погрешности относительно нулевой погрешности теоретических значений, что доказывает эффективность предлагаемого способа.

Таким образом, определение составляющих импеданса биообъекта по калибровочной характеристике, компенсирующей неопределенность постоянной времени, выбранной произвольно, по которой определяют действительные значения информативных параметров, действительную характеристику определения составляющих импеданса, в отличие от известных решений, повышает эффективность в несколько раз.


Способ определения составляющих импеданса биообъекта
Способ определения составляющих импеданса биообъекта
Способ определения составляющих импеданса биообъекта
Способ определения составляющих импеданса биообъекта
Способ определения составляющих импеданса биообъекта
Способ определения составляющих импеданса биообъекта
Способ определения составляющих импеданса биообъекта
Способ определения составляющих импеданса биообъекта
Источник поступления информации: Роспатент

Showing 1-10 of 118 items.
13.01.2017
№217.015.8551

Перекрытие здания, сооружения

Предложение относится к области строительства и может быть использовано при возведении жилых, общественных и административных зданий и сооружений, а также при их восстановлении или реконструкции. Технический результат предложения заключается в сокращении трудо- и материалозатрат и обеспечении...
Тип: Изобретение
Номер охранного документа: 0002603106
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.88f8

Интегратор постоянного напряжения

Изобретение относится к вычислительной и информационно-измерительной технике. Технический результат - способность определять не только интегральное значение входного сигнала, но и скорость его изменения. Интегратор постоянного напряжения содержит генератор 1 импульсов, двоичный счетчик 2,...
Тип: Изобретение
Номер охранного документа: 0002602675
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8932

Устройство для регистрации суммарного значения параметра

Изобретение относится к измерительной технике. Техническим результатом предлагаемого изобретения является повышение быстродействия и надежности работы устройства. Устройство для регистрации суммарного значения параметра содержит датчик параметра и усилитель, а также последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002602673
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b128

Способ измерения теплофизических свойств анизотропных материалов методом линейного импульсного источника теплоты

Изобретение относится к области исследования теплофизических характеристик анизотропных материалов. Заявлен способ измерения теплофизических свойств анизотропных материалов методом линейного импульсного источника теплоты, заключающийся в том, что образец исследуемого материала изготавливают в...
Тип: Изобретение
Номер охранного документа: 0002613194
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b1d0

Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициента диффузии растворителей в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002613191
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b26b

Способ определения удельной теплоемкости сыпучих материалов

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов. Способ определения удельной теплоемкости сыпучих материалов заключается в том, что герметизируют объем с образцом известной массы, образец приводят в тепловой контакт по плоскости с...
Тип: Изобретение
Номер охранного документа: 0002613591
Дата охранного документа: 17.03.2017
25.08.2017
№217.015.b441

Способ охлаждения дыхательной газовой смеси в средствах индивидуальной защиты органов дыхания

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно...
Тип: Изобретение
Номер охранного документа: 0002614028
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b5ae

Линия приготовления сухой хмелево-тыквенной закваски

Изобретение относится к хлебопекарной промышленности, в частности к производству хлебопекарных заквасок, и может быть использовано в производстве хлеба функционального назначения. Линия предусматривает приготовление двух фаз, фазы порционного приготовления жидкой хмелево-тыквенной закваски и...
Тип: Изобретение
Номер охранного документа: 0002614364
Дата охранного документа: 24.03.2017
26.08.2017
№217.015.e217

Гидродинамический смеситель

Изобретение относится к устройствам для перемешивания, гомогенизации, эмульгирования жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, гидромеханических, тепломассообменных процессов в системах "жидкость-жидкость". Смеситель содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002625874
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e4c4

Электробаромембранный аппарат плоскокамерного типа

Изобретение относится к аппаратам, предназначенным для очистки, разделения и концентрирования растворов электрогиперфильтрационным и электронанофильтрационным методами. Электробаромембранный аппарат плоскокамерного типа состоит из двух фланцев и камер корпуса с каналами ввода и вывода...
Тип: Изобретение
Номер охранного документа: 0002625668
Дата охранного документа: 18.07.2017
Showing 1-10 of 30 items.
20.04.2015
№216.013.4382

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине, а именно к гемокоагулогии, и может быть использовано для выявления лиц группы риска развития гемокоагуляционных осложнений. Сущность способа: проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца...
Тип: Изобретение
Номер охранного документа: 0002548780
Дата охранного документа: 20.04.2015
10.06.2015
№216.013.525a

Способ и устройство определения влажности капиллярно-пористых материалов по ипульсной динамической характеристике

Группа изобретений относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Способ определения влажности капиллярно-пористых материалов заключается в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии,...
Тип: Изобретение
Номер охранного документа: 0002552603
Дата охранного документа: 10.06.2015
20.12.2015
№216.013.9c09

Способ и система автоматического управления

Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. Технический результат - автоматизация регулирования системами в адаптивном диапазоне за счет адаптивной оценки сигнала по программно-управляемой нормируемой мере....
Тип: Изобретение
Номер охранного документа: 0002571570
Дата охранного документа: 20.12.2015
10.04.2016
№216.015.317a

Способ и система цветового представления анализа динамики состояния многопараметрического объекта или процесса

Изобретение относится к вычислительной технике. Технический результат - повышение энергетической эффективности оборудования, минимизация влияния субъективного фактора путем возможности автоматического принятия решений и реализации адаптивных управляющих воздействий по результатам анализа...
Тип: Изобретение
Номер охранного документа: 0002580813
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.46a2

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ определения составляющих импеданса биологического объекта состоит в измерении напряжения на биообъекте на границах диапазона, при этом определяют активное сопротивление и...
Тип: Изобретение
Номер охранного документа: 0002586457
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7e68

Способ тонометрии глаза

Предлагаемое изобретение относится к медицине, в частности к измерению внутриглазного давления, и может быть использовано для измерения офтальмотонуса в раннем посттравматическом периоде. Организуют исследуемый и опорный сигналы при воздействии на глаз и лобную часть лица вибрирующим датчиком,...
Тип: Изобретение
Номер охранного документа: 0002601178
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.a43c

Неинвазивный способ определения концентрации глюкозы в крови

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного определения концентрации глюкозы в крови. Для этого накладывают термисторы над поверхностной веной головы испытуемого и измеряют температуру и концентрацию глюкозы в крови. При этом...
Тип: Изобретение
Номер охранного документа: 0002607494
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.db59

Способ определения составляющих импеданса биообъекта

Изобретение относится к области медицины. Для определения составляющих импеданса биологического объекта осуществляют подачу на биообъект импульса стабилизированного тока I и измерение напряжения u. В момент времени t после начала импульса тока в качестве составляющих импеданса биообъекта...
Тип: Изобретение
Номер охранного документа: 0002624172
Дата охранного документа: 30.06.2017
26.08.2017
№217.015.db9c

Способ и система автоматического управления

Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. В способе автоматического управления системами выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину...
Тип: Изобретение
Номер охранного документа: 0002624136
Дата охранного документа: 30.06.2017
29.12.2017
№217.015.faaf

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к области медицины, а именно к способу определения динамики изменения скорости оседания эритроцитов. Способ определения динамики изменения скорости оседания эритроцитов, включает смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с...
Тип: Изобретение
Номер охранного документа: 0002640190
Дата охранного документа: 26.12.2017
+ добавить свой РИД