×
20.12.2015
216.013.9c09

Результат интеллектуальной деятельности: СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. Технический результат - автоматизация регулирования системами в адаптивном диапазоне за счет адаптивной оценки сигнала по программно-управляемой нормируемой мере. Поставленная задача достигается тем, что в системе автоматического управления, содержащей контроллер, последовательно соединенный через исполнительный механизм с управляемым объектом, в отличие от прототипа исполнительным механизмом служит цифроаналоговый преобразователь и дополнительно введен аналого-цифровой преобразователь, включенный между выходом управляемого объекта и входом контроллера, который состоит из задатчика командной величины, последовательно соединенных с ним сумматоров, выходы которых через делитель связаны с блоком возведения в степень, выход которого является выходом контроллера, входами которого являются вторые входы сумматоров, служащие для выходной переменной управляемого объекта. 2 н. и 2 з.п. ф-лы, 8 ил., 5 табл.

Предлагаемые изобретения относятся к автоматике и могут быть использованы в чистых помещениях для поддержания постоянной оптимальной температуры.

Известен способ автоматического управления системами, включающий в себя использование командных и фактических величин выходных переменных для регулирования управляемой системы [Носов Г.Р. и др. Автоматика и автоматизация мобильных сельскохозяйственных машин. - К.: Высшая школа, 1984, с.171]. Для его осуществления известно устройство, включающее в себя соединенные в блоки элементы преобразования и усиления выходной переменной управляемого объекта, а также блок для измерения возмущенного воздействия на управляемом объекте.

Недостатком способа и устройства является низкая эффективность из-за недостаточной точности управления переходными процессами при требуемом быстродействии.

За прототип принят способ автоматического управления системами [См. патент РФ №2153697, G05B 17/00, 2000, Фурунжиев Р.И.], при котором выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину выходной переменной управляемого объекта, которую вместе с величиной выходной переменной исполнительного механизма и командной величиной выходной переменной управляемого объекта используют для формирования управляющего сигнала, который подают на вход исполнительного механизма, причем дополнительно используют отрицательную обратную связь по выходной переменной исполнительного механизма, что измеряют скорость и ускорение изменения фактической величины выходной переменной управляемого объекта и подают ее на вход блока формирования желаемых свойств движения выходной переменной управляемого объекта вместе с фактической величиной выходной переменной управляемого объекта и величиной выходной переменной исполнительного механизма.

В регуляторе, включающем в себя объединенные в блоки элементы преобразования и усиления скорости сигнала управляемого объекта, каналы измерения величины, скорости и ускорения выходной переменной которого связаны со входами регулятора, выход которого связан со входом исполнительного привода, выход последнего связан со входом управляемого объекта, имеются признаки: каналы измерения выходной переменной скорости и ускорения управляемого объекта связаны со входами блока, формирующего желаемые свойства движения выходной переменной управляемого объекта.

Прототипы обладают существенными недостатками: невозможностью автоматизации в адаптивном диапазоне из-за необходимости ручной настройки по субъективной мере оценки. Это снижает универсальность использования способа и устройства и их эффективность.

Технической задачей предлагаемого решения является автоматизация регулирования системами в адаптивном диапазоне за счет адаптивной оценки сигнала по программно-управляемой нормируемой мере.

Поставленная задача достигается тем, что

1. в способе автоматического управления системами, при котором выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной управляемого объекта используют для формирования управляющего сигнала. Управляющий сигнал подают на вход исполнительного механизма за счет использования отрицательной обратной связи по выходной переменной управляемого объекта. В отличие от прототипа выходную переменную управляемого объекта в цифровом эквиваленте подают на вход блока контроллера, управляющий сигнал которого соответствует желаемым свойствам выходной переменной управляемого объекта и его реализуют мультипликативно-симметричным критерием погрешности, выполняющим роль автоматического регулятора, который адаптируется по диапазону за счет оценки фактических величин входной и выходной переменной к нормированному эквиваленту их максимальных величин в каждый момент времени, и соответствующим квадрату отношения разности и суммы командной входной и выходной переменных управляемого объекта.

2. В системе автоматического управления, содержащей контроллер, последовательно соединенный через исполнительный механизм с управляемым объектом, в отличие от прототипа, исполнительным механизмом служит цифроаналоговый преобразователь и дополнительно введен аналого-цифровой преобразователь, включенный между выходом управляемого объекта и входом контроллера, который состоит из задатчика командной величины, последовательно соединенных с ним сумматоров, выходы которых через делитель связаны с блоком возведения в степень, выход которого является выходом контроллера, входами которого являются вторые входы сумматоров, служащие для выходной переменной управляемого объекта.

3. В системе по п. 2, в отличие от прототипа, контроллер состоит из задатчика командной величины, подключенного ко входам сумматора и умножителя. Выход сумматора объединен со входом квадратора, выход которого через делитель связан с выходом умножителя, а выход делителя соединен через блок вычитания с выходом контроллера.

4. В системе по п. 2, в отличие от прототипа, контроллер выполнен на программируемой логической матрице, включающей по числу эквивалентов командной величины количество программируемых дешифраторов двоичного кода входной переменной командной величины и выходной переменной управляемого объекта, систематизированных в адресном пространстве программируемой логической матрицы в знакогенератор, информационные входы которого служат для тактирования переменными, а выходы для формирования управляющего сигнала знакогенератора, который адаптируется по диапазону за счет оценки фактических величин входной и выходной переменных к нормированному эквиваленту их максимальных величин в каждый момент времени и соответствующим квадрату отношения разности и суммы командной входной и выходной переменных управляемого объекта на выходах логической матрицы.

Сущность способа и устройства поясняют фиг. 1-8. Фиг. 1-5 отражают структуры устройства на уровне обобщенной и структурной, функциональной и матричной схем. Зависимости амплитудно-временных динамических характеристик U и погрешности ε от вида управляющего воздействия показаны на фиг. 6-7, качественный анализ которых представлен в таблицах 1-3. Фиг. 8 показывает зависимость погрешности ε и времени t выхода на режим от коэффициента k, реализуемой при регулировании с использованием стандартного критерия.

В предлагаемом способе автоматического управления системами выходную переменную ε(E,U)=ε исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину U выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной Е управляемого объекта используют для формирования управляющего сигнала ε(U2,Е)=ε2. Его подают на вход исполнительного механизма, причем используют отрицательную обратную связь по выходной переменной U управляемого объекта. Для автоматизации регулирования в адаптивном диапазоне выходную переменную U управляемого объекта в цифровом эквиваленте U2 подают на вход блока контроллера, управляющий сигнал ε(U2,E)=ε2 которого соответствует желаемым свойствам выходной переменной U управляемого объекта.

Алгоритм вычисления управляющего сигнала, в цифровом ε(U2,Е)=ε2 и тождественном аналоговом ε(U,E)=ε представлении, выполняющего функцию автоматического регулятора (погрешности мультипликативно-симметричного критерия МСК), оценивают по относительной погрешности:

где (ХСГСА)2 - отношение произведения случайных величин переменных ПUi к их нормируемому эквиваленту - max П=XCA, для i=1,2, т.к. используется n=2 переменных U1=E и U2=U, соответствует (XCA)2.

Их физический смысл тождественен квадрату средней геометрической оценки:

произведения переменных сигналов Е и U, а также квадрату среднего арифметического:

Раскрывая значения ХСГ и ХСА соответственно (2) и (3), преобразуем (1):

Приведем выражение к общему знаменателю, раскроем скобки и объединим подобные члены:

Выражение [E2-2EU+U2) представляет собой квадрат разности, а сокращаются в числителе и знаменателе, поэтому получаем относительную погрешность МСК в виде квадрата отношения разности и суммы командной входной Е и выходной переменных U управляемого объекта:

Сущность способа поясняют фиг. 1-5. Фиг. 1 - обобщенная структурная схема, на которой 1 - контроллер (К), 2 - исполнительный механизм (ИМ) в виде цифроаналогового преобразователя (ЦАП), 3 - управляемый объект (УО), 4 - аналого-цифровой преобразователь (АЦП).

1. На обобщенной структурной схеме (Фиг. 1) выходную переменную е исполнительного механизма 2 подают на вход управляемого объекта 3, измеряют фактическую величину U выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной Е управляемого объекта в коде U2 используют для формирования управляющего сигнала ε(E,U2)=ε2. Его подают на вход исполнительного механизма 2, причем используют отрицательную обратную связь по выходной переменной U управляемого объекта 3. Для автоматизации регулирования в адаптивном диапазоне выходную переменную U управляемого объекта преобразуют в код U2, подают на вход блока контроллера 1, управляющий сигнал ε которого соответствует желаемым свойствам выходной переменной U управляемого объекта. Управляющий сигнал ε реализуют мультипликативно-симметричным критерием (МСК) погрешности (4), соответствующим квадрату отношения разности (E-U) и суммы (E+U) командной входной Е и выходной U переменных управляемого объекта 3 и выполняющим роль автоматического регулятора. МСК (4) адаптируется по диапазону за счет оценки фактических величин входной Е и выходной U переменной к нормированному эквиваленту их максимальных max (E,U) величин (3) в каждый момент времени.

2. На фиг. 2 показана структурная схема системы автоматического управления, содержащая контроллер 1, последовательно соединенный через исполнительный механизм 2 с управляемым объектом УОЗ, отличающаяся тем, что исполнительным механизмом 3 служит цифроаналоговый преобразователь ЦАП и дополнительно введен аналого-цифровой преобразователь АЦП4, включенный между выходом управляемого объекта 3 и входом контроллера 1. Контроллер 1 состоит из задатчика командной величины (1а), последовательно соединенных с ним сумматоров (1б), выходы которых через делитель (1в) связаны с блоком возведения в степень (1г), выход которого является выходом контроллера 1, входами которого являются вторые входы сумматоров, служащие для выходной переменной управляемого объекта.

На структурной схеме системы (фиг. 2) выходную переменную Е блока задатчика командной величины 1а подают на вход сумматоров 1б. Измеряют фактическую величину выходной переменной U (тождественной цифровому эквиваленту U2) управляемого объекта 3, которую вместе с величиной входной переменной Е контроллера 1 подают на сумматоры 1б. Сигналы E-U и Е+U подают на делитель 1в, а затем на блок возведения в степень 1г, которые используют для формирования управляющего сигнала ε (4). Управляющий сигнал ε(U2,Е) подают на вход исполнительного механизма ЦАП 2. Сигнал с исполнительного механизма ε подается на управляемый объект 3. Дополнительно используют отрицательную обратную связь по выходной переменной управляемого объекта 3. Управляющее воздействие, соответствующее желаемым свойствам выходной переменной U управляемого объекта 3, реализуют мультипликативно-симметричным критерием погрешности (1). Блок 1 на фиг. 1 соответствует квадрату отношения разности и суммы входной и выходной переменных управляемого объекта U и выполняет роль автоматического регулятора. МСК адаптируется по диапазону за счет оценки фактических величин входной Е и выходной переменной U (2) к нормированному эквиваленту их максимальных величин (3) в каждый момент времени. Сигнал U с управляемого объекта 3 преобразуют АЦП 4 в цифровой эквивалент (сигнал U2) и подают на вход сумматоров 1б.

Конкретное исполнение блоков может иметь следующие признаки (фиг. 1): блок 1 является контроллером, необходим для задания сигнала Е и формирования управляющего сигнала ε(U2,E)=ε2. Блок 2 представляет собой исполняющий механизм (в виде ЦАП) для преобразования ε2 в аналоговый сигнал ε (4). Блок 3 является управляемым объектом. Сигнал U с выхода управляемого объекта 3 управления подается на вход АЦП 4, с которого сигнал в цифровом эквиваленте U2 поступает на блок контроллера (1).

3. На фиг. 3 представлена функциональная схема системы, отличающаяся тем, что контроллер 1 состоит из задатчика командной величины (1а), подключенного ко входам умножителя (1д) и сумматора (1б), выход которого объединен со входом квадратора (1в), выход которого через делитель (1г) связан с выходом умножителя 1д. Выход делителя (1г) соединен через блок вычитания (1е) с выходом контроллера 1.

Входную переменную Е задатчика командной величины 1а подают на вход умножителя 1д и сумматора 1б. Сигнал П=EU с умножителя 1д подают на блок деления 1г, а сигнал Σ=E+U с сумматора 1б подают на квадратор 1в и нормируют в степень 2. Затем оба этих сигнала поступают на делитель (1г), а их отношение вычитают из единицы в блоке 1е, т.е. формируют управляющий сигнал (1).

4. Функциональную схему поясняет архитектура контроллера как неделимая совокупность программируемой логической матрицы (фиг. 4) и таблицы (фиг. 5) дешифрации погрешности. Контроллер 1 выполнен на программируемой логической матрице (ПЛМ, PLM), включающей по числу эквивалентов командной величины Е количество программируемых дешифраторов (DC) двоичного кода входной переменной командной величины Е и выходной переменной управляемого объекта U2, систематизированных в адресном пространстве программируемой логической матрицы в знакогенератор. Его информационные входы d0-dn служат для тактирования переменными Е и U2, а выходы Y0-Ym - для формирования управляющего сигнала ε(U2,Е)=ε2 знакогенератора, который адаптируется по диапазону за счет оценки фактических величин входной Е и выходной U переменных (2) к нормированному эквиваленту (3) их максимальных величин в каждый момент времени и соответствующим квадрату отношения (4) разности и суммы командной входной и выходной переменных управляемого объекта на выходах логической матрицы. Таблица дешифрации (фиг. 5) поясняет адресное пространство знакогенератора ПЛМ на примере первого эквивалента командной величины Е (0,1) первого дешифратора произведений (2) в управляющий сигнал (4). Первый и второй столбцы таблицы отражают выходные переменные U управляемого объекта, соответственно, в двоичном U2 и десятичном U10 коде. Последний и предпоследний столбцы иллюстрируют результат дешифрации управляющего сигнала (4) также в двоичном ε2 и десятичном ε10 коде.

Основными критериями оценки качества работы пропорционального регулирования являются погрешность и время выхода на установившееся значение динамической характеристики.

Проведем сравнение эффективности предлагаемого критерия МСК со стандартным критерием, коэффициенты которого настраиваются вручную:

где Е - это установившееся значение командной величины входной переменной, а U - значение выходной в данный момент времени. Стандартной и самой распространенной мерой оценки считается разность (5) между установившимся и текущем значении, что объясняется простотой ее вычисления. Но достоверность и объективность этой оценки условны из-за отсутствия оптимального эквивалента. Нормируем критерий (5) до уровня погрешности.

Относительная погрешность при стандартном критерии находится по формуле:

На фиг. 8 показаны зависимости погрешности и времени выхода на режим от коэффициента k при использовании стандартного критерия (табл.1).

1. Оптимизация k
k Погрешность при t=0,9 Время при погрешности =0,02
1 0,14 0,89
0,5 0,12 0,85
0,3 0,103 0,81
0,2 0,17 1,7
0,1 0,42 3,8
прец.кр. 0 0,23

В процессе ручного регулирования (фиг. 8) из семейства выбрана лучшая характеристика по стандартному критерию (6) с оптимальным коэффициентом регулирования k=0,3 с минимальной погрешностью ε=0,103 и временем выхода на режим t=0,81 с.

Результаты компьютерного моделирования зависимости амплитудно-временных динамических характеристик 1 и 2, соответствующих мультипликативно-симметричному (1,4) и стандартному (6) критериям, систематизированы на фиг. 6. Качественный анализ фиг.6 показывает повышение эффективности выхода на режим характеристик от стандартного 1 до прецизионного 2 критерия. Для проведения количественного анализа на фиг. 7 зафиксируем значение t=0.2 и оценим значение погрешности при фиксированном времени (табл.2).

2. Погрешность
Виды регулирования (время =0.2) Погрешность:
Адаптивный МСК 2 0.05
Стандартный 1 0.65

Количественный анализ табл.2 показывает снижение погрешности регулирования с 65% для стандартного 1 до 5% МСК 2 критерия. Погрешность МСК 2 в 13 раз лучше стандарта 1, т.е. прецизионная, т.к. на порядок ниже.

На фиг. 7 показаны графики погрешностей прецизионного критерия МСК 2 и наиболее оптимально отрегулированного для k=0,3 (фиг. 8) стандартного 1 критерия. Для анализа оперативности зафиксируем уровень 0,2 погрешности и оценим текущее значение времени по оперативности (см. табл.3).

3. Оперативность
Виды регулирования (погрешность ε=0.2) Значение t, с
Адаптивный МСК 2 0.1
Стандартный 1 0.5

Эффективность по оперативности рассчитаем из отношения интервалов регулирования стандартного 1 t2 и МСК 2 t1 критериев, что позволяет сравнить, во сколько один критерий эффективнее другого:

Как видно из фиг. 7, МСК 2 критерий эффективнее стандартного 1 в 5 раз, т.е. практически на порядок выше.

Проведем анализ эффективности по точности стандартного 1 критерия ε1 относительно МСК 2 критерия ε2, поделив (6) на (4):

Выразим U пропорционально командной Е величине U=E/m, тогда:

Из (7) находим:

Предположим, что m меняется от 1,01 до 1,1, результаты эффективности η систематизируем в табл.4:

4. Эффективность
m 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08 1,09 1,1
η 400 200 133 100 80,1 66,7 57,2 50,1 44,5 40,1

Из табл.4 видно, что ε1 всегда больше ε2 в η раз, следовательно, предлагаемый МСК 2 эффективнее стандартного 1 на 2 порядка. Кроме того, (7) показывает, что m может меняться в диапазоне от 1 до 0 и физически является коэффициентом k управления, т.е. η=k (табл.5):

5. Коэффициент управления
m 0,9 0,8 0,7 0,6 0,5 0,4 0,(3) 0,2 0,1 0,01
η 40 20 13,3 10,7 9 8,2 8 9 13,4 103

Из табл.5 следует, что коэффициент управления не константа, а функция с оптимумом при m=0,3(3), что позволяет сделать вывод о его адаптивности при автоматизации процесса регулирования до желаемого оптимального нормированного эквивалента.

Таким образом, формирование управляющего сигнала по программно-управляемой нормируемой мере МСК погрешности в отличие от известных решений повышает в два раза эффективность по точности и на порядок эффективность автоматического регулирования за счет оценки фактических величин входной и выходной переменной к нормированному эквиваленту их максимальных величин. Нормированный эквивалент по следящей обратной связи автоматически оптимизирует параметры динамической характеристики системы в адаптивном диапазоне, это исключает ручное регулирование оператором и на порядок повышает метрологическую эффективность.


СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 66 items.
20.01.2014
№216.012.9894

Способ определения влажности древесины

Изобретение относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Предложен способ определения влажности древесины, в котором осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца,...
Тип: Изобретение
Номер охранного документа: 0002504759
Дата охранного документа: 20.01.2014
20.03.2014
№216.012.ab28

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ заключается в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока и...
Тип: Изобретение
Номер охранного документа: 0002509531
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.c279

Способ определения ударного объема сердца

Изобретение относится к медицине, а именно к кардиологии, кардиохирургии и функциональной диагностике. Осуществляют наложение двух токовых и двух измерительных электродов на определенные участки тела. Производят регистрацию реограммы и дифференциальной реограммы. Определяют площади между...
Тип: Изобретение
Номер охранного документа: 0002515534
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c7d3

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к области медицины, а именно к лабораторной клинической диагностике, и касается способа определения динамики изменения скорости оседания эритроцитов. Способ включает: смешивание исследуемой пробы крови с антикоагулянтом; забор полученного раствора крови с антикоагулянтом в...
Тип: Изобретение
Номер охранного документа: 0002516914
Дата охранного документа: 20.05.2014
20.06.2014
№216.012.d3ec

Способ производства зефира

Изобретение относится к пищевой промышленности, к ее кондитерской отрасли. Способ производства зефира включает приготовление яблочно-пектиновой смеси, сахаро-паточного сиропа и приготовление зефирной массы путем сбивания яблочно-пектиновой смеси, лактата натрия, сахара и белка с последующим...
Тип: Изобретение
Номер охранного документа: 0002520023
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.df08

Электробаромембранный аппарат рулонного типа

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Электробаромембранный аппарат рулонного типа содержит корпус из диэлектрического материала, монополярных электродов анода и катода, выполненных из графитовой ткани, устройство для подвода электрического тока,...
Тип: Изобретение
Номер охранного документа: 0002522882
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e186

Способ энергосберегающей сушки гранулированных полимерных материалов

Способ относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе. В способе энергосберегающей сушки гранулированных полимерных материалов, включающем раздельную подачу гидрофобных и гидрофильных материалов сверху вниз в...
Тип: Изобретение
Номер охранного документа: 0002523520
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f200

Поршневая задвижка

Поршневая задвижка относится к трубопроводной арматуре и может быть использована в нефтяной, химической и других отраслях промышленности. Поршневая задвижка содержит корпус с уплотняющей втулкой, два поршня-шибера, два штока, две крышки, две опорные вогнутые площадки. Корпус выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002527774
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f363

Газоанализатор

Изобретение относится к области метрологии и может быть использовано для определения концентрации газообразных веществ. Газоанализатор содержит излучающий диод, выполненный из двух p-n переходов, размещенных в едином корпусе и приемник излучения, расположенные в кювете, разделенной прозрачной...
Тип: Изобретение
Номер охранного документа: 0002528129
Дата охранного документа: 10.09.2014
10.10.2014
№216.012.fbc3

Способ оперативного динамического анализа нечеткого состояния многопараметрического объекта или процесса

Изобретение относится к способу оперативного динамического анализа нечеткого состояния систем отопления зданий и водоснабжения источниками СВЧ-излучения. Технический результат заключается в повышении энергетической эффективности систем отопления зданий и сооружений за счет возможности...
Тип: Изобретение
Номер охранного документа: 0002530297
Дата охранного документа: 10.10.2014
Showing 1-10 of 89 items.
20.07.2013
№216.012.567a

Электробаромембранный аппарат рулонного типа

Изобретение относится к конструкциям мембранных аппаратов рулонного типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации. Электробаромембранный аппарат рулонного типа...
Тип: Изобретение
Номер охранного документа: 0002487746
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.567c

Способ смешения материалов и устройство для его осуществления

Изобретение относится к непрерывному приготовлению смесей сыпучих материалов с высокой неоднородностью частиц по размеру и плотности и может использоваться в химической, пищевой, микробиологической, строительных материалов и других отраслях промышленности. Способ включает дозированную подачу...
Тип: Изобретение
Номер охранного документа: 0002487748
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5d1a

Ультразвуковой девулканизатор непрерывного действия

Ультразвуковой девулканизатор непрерывного действия относится к устройствам для переработки полимерных материалов, в том числе и эластомеров для получения различных профильных изделий. В цилиндре экструдера с помощью оснасток установлены ультразвуковые излучатели. Шнек имеет разрывные витки в...
Тип: Изобретение
Номер охранного документа: 0002489455
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.6859

Жидкостно-кольцевая машина

Изобретение относится к насосо-компрессоростроению и вакуумной технике, конкретно к жидкостно-кольцевым машинам. Жидкостно-кольцевая машина содержит вращающийся цилиндрический корпус 1, размещенное в нем с эксцентриситетом и возможностью вращения рабочее колесо 2 на неподвижном...
Тип: Изобретение
Номер охранного документа: 0002492360
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68ba

Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов

Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов заключается...
Тип: Изобретение
Номер охранного документа: 0002492457
Дата охранного документа: 10.09.2013
27.10.2013
№216.012.78b2

Мембранный аппарат комбинированного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами микрофильтрации, ультрафильтрации, осмофильтрации и может быть использовано в химической, текстильной, микробиологической, медицинской, пищевой и других областях промышленности. Разделение раствора...
Тип: Изобретение
Номер охранного документа: 0002496560
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7acd

Способ определения коэффициента влагопроводности листовых ортотропных капиллярно-пористых материалов

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов влагопроводности ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002497099
Дата охранного документа: 27.10.2013
10.01.2014
№216.012.93d5

Механический девулканизатор непрерывного действия

Заявленное изобретение относится к устройствам для переработки полимерных материалов, в том числе и эластомеров с целью получения девулканизата. Техническим результатом заявленного изобретения является повышение стабильности переработки полимеров, увеличение производительности и эффективности...
Тип: Изобретение
Номер охранного документа: 0002503539
Дата охранного документа: 10.01.2014
20.03.2014
№216.012.ab28

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ заключается в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока и...
Тип: Изобретение
Номер охранного документа: 0002509531
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b409

Способ повышения теплоотдачи с помощью микротурбулизирующих частиц

Изобретение относится к области теплотехники и гальванотехники и может использоваться в системах повышения теплоотдачи для улучшения характеристик теплоотдачи на различных поверхностях устройства теплопередачи. Это достигается использованием в качестве микротурбулизирующих частиц углеродных...
Тип: Изобретение
Номер охранного документа: 0002511806
Дата охранного документа: 10.04.2014
+ добавить свой РИД