×
26.07.2018
218.016.7570

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ АТМОСФЕРЫ НА ВЫСОТЕ ПОЛЕТА КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002662371
Дата охранного документа
25.07.2018
Аннотация: Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению его подвижных частей определяют площадь миделя КА. Гасят возмущающие воздействия на калиброванный объект (КО), свободно перемещаемый внутри КА, и измеряют параметры движения КО относительно корпуса КА, в т.ч. – непрерывно с момента, когда эти параметры станут менее заданных значений, до момента контакта КО с корпусом КА. Плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, а также – по векторам расстояния и ускорения движения центра масс КО относительно центра масс КА. Технический результат состоит в возможности определения локальной плотности атмосферы по параметрам относительного движения КО. 1 з.п. ф-лы.

Изобретение относится к области космической техники и может быть использовано при определении плотности атмосферы на высоте полета космического аппарата (КА).

Известен способ определения плотности атмосферы по модели, описанной в государственном стандарте ГОСТ 4401-81 Атмосфера стандартная. Параметры. Данный ГОСТ устанавливает числовые значения основных параметров атмосферы для высот до 1200 км как функции высоты. Недостаток указанной «статической» модели атмосферы заключается в том, что в ней не предусмотрен учет изменения значений параметров атмосферы во времени, в частности учет переменного уровня солнечной активности и других космических факторов (Модель космоса. Том 2. НИИЯФ МГУ, 1983; Гальперин Ю.И., Дмитриев А.В., Зеленый Л.М., Панасюк Л.М. Влияние космической погоды на безопасность авиационных и космических полетов. «Полет 2001»).

Недостаток способа частично устраняется с использованием модели, описанной в государственном стандарте ГОСТ 25645.302-83 Расчеты баллистические искусственных спутников Земли. Методика расчета индексов солнечной активности.

Данный ГОСТ устанавливает методику расчета индексов солнечной активности (индексы W и F10.7) для интервалов времени прогнозирования условий движения КА от 4 мес до 11 лет при проведении проектных баллистических расчетов.

Наиболее близким из аналогов, принятым за прототип, является способ определения плотности атмосферы при баллистическом обеспечении полета КА, включающий измерение параметров движения КА и определение плотности атмосферы с учетом координат местоположения КА (ГОСТ 25645.166-2004. Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли - прототип). Указанный стандарт определяет соотношения для расчета значений параметров плотности атмосферы Земли в диапазоне высот 120-1500 км для различных уровней солнечной активности при известных дате, времени и координатах точки пространства, которую пролетает КА.

Недостатком способа-прототипа является то, что при его использовании точность определения плотности атмосферы Земли ограничена точностью модельных расчетов, не учитывающих фактическое состояние атмосферы в текущий момент времени в конкретных точках космического пространства, составляющих орбиту КА.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности определения плотности атмосферы Земли.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в определении плотности атмосферы на высоте полета КА с инерционными исполнительными органами по измерениям параметров относительного движения свободно перемещаемого калиброванного объекта внутри корпуса КА.

Технический результат достигается тем, что в способе определения плотности атмосферы на высоте полета КА, включающем измерение параметров движения КА с инерционными исполнительными органами и определение плотности атмосферы с учетом координат местоположения КА, дополнительно на участке орбиты с отключенными двигателями КА поддерживают ориентацию КА с помощью гиродинов, измеряют параметры движения центра масс и параметры вращательного движения КА, по определенным параметрам углового положения КА и положению его подвижных частей определяют площадь миделя КА, гасят воздействия на свободно перемещаемый внутри корпуса КА калиброванный объект, измеряют параметры движения калиброванного объекта относительно корпуса КА, по измеренным параметрам движения калиброванного объекта относительно корпуса КА определяют момент времени, в который параметры движения калиброванного объекта относительно КА менее задаваемых значений, начиная с данного момента непрерывно измеряют параметры движения калиброванного объекта относительно КА до момента контакта калиброванного объекта с элементами корпуса КА, на интервале измерения параметров движения калиброванного объекта по измеренным параметрам движения КА определяют радиус-вектор и вектор скорости движения КА, и плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, вектору расстояния от центра масс калиброванного объекта до центра масс КА и вектору ускорения движения центра масс калиброванного объекта относительно центра масс КА.

Измерения параметров движения калиброванного объекта относительно КА на задаваемом временном интервале предлагается осуществлять посредством непрерывной фото-видеосъемки движения калиброванного объекта фото-видеоаппаратурой, жестко установленной относительно корпуса КА.

В полете КА набегающий поток воздействует на элементы конструкции КА тем больше, чем больше площадь проекции элементов на плоскость, перпендикулярную направлению набегающего потока, которое, в свою очередь, параллельно направлению вектора скорости КА.

В предлагаемом способе рассматриваем КА с инерционными исполнительными органами. На участке орбиты с отключенными двигателями КА поддерживают ориентацию КА с помощью гиродинов и измеряют параметры движения центра масс КА и параметры вращательного движения КА.

По определенным параметрам углового положения КА и положению подвижных частей КА (вращающиеся солнечные батареи КА, вращающиеся радиаторы КА и т.п.) определяют площадь миделя КА.

Далее используют находящийся на КА свободно перемещаемый внутри корпуса КА калиброванный объект - объект известной массы.

Гасит воздействия на данный калиброванный объект и измеряют параметры движения калиброванного объекта относительно корпуса КА.

Например, космонавт фиксирует положение данного калиброванного объекта внутри объема корпуса КА руками или с помощью специальных приспособлений.

Измерения параметров движения калиброванного объекта относительно КА на задаваемом временном интервале могут быть выполнены, например, посредством непрерывной фото-видеосъемки движения калиброванного объекта фото-видеоаппаратурой, жестко установленной относительно корпуса КА.

По измеренным параметрам движения калиброванного объекта относительно корпуса КА определяют момент времени, в который параметры движения калиброванного объекта относительно КА менее задаваемых значений.

Начиная с данного момента непрерывно измеряют параметры движения калиброванного объекта относительно КА до момента контакта калиброванного объекта с элементами корпуса КА. На интервале измерения параметров движения калиброванного объекта по измеренным параметрам движения КА определяют радиус-вектор и вектор скорости движения КА.

Плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, вектору расстояния от центра масс калиброванного объекта до центра масс КА и вектору ускорения движения центра масс калиброванного объекта относительно центра масс КА.

Например, плотность атмосферы ρ может быть определена по соотношению

где - вектор ускорения движения центра масс калиброванного объекта относительно центра масс КА;

ΔR - векторное расстояние от центра масс калиброванного объекта до центра масс КА;

R - радиус-вектор центра масс КА;

V - вектор скорости КА в гринвичской системе координат;

CX - коэффициент аэродинамического сопротивления КА;

g(R,t) - напряженность гравитационного поля Земли;

SX - площадь миделя КА;

m - масса КА.

Соотношение (1) может быть получено и решено с помощью известных методов механики космического полета (Навигационное обеспечение полета орбитального комплекса «Салют-6»-«Союз»-«Прогресс». - М.: Наука, 1985; Иванов Н.М., Лысенко Л.Н., Дмитриевский А.А. Баллистика и навигация космических аппаратов. М.: Машиностроение, 1986; Охоцимский Д.Е., Сихарулидзе Ю.Г. «Основы механики космического полета. М.: Наука. 1990). При этом могут быть реализованы различные случаи расположения центра масс калиброванного объекта относительно орбиты движения центра масс КА в момент гашения воздействий на калиброванный объект и начала измерения параметров движения калиброванного объекта относительно корпуса КА: центр масс калиброванного объекта может располагаться дальше, на уровне и ближе к Земле, чем центр масс КА.

Опишем технический эффект предлагаемого изобретения.

Согласно правилам управления полетом международной космической станции (Спецификация Российского сегмента. Программа Международная космическая станция. SSP 41163. Редакция Н, 27.01.2001. раздел 3.3.12.8; Общие правила полета по операциям МКС. Том В. Управление полетных операций. NSTS-12820. Космический центр им. Линдона Б.Джонсона. Хьюстон, Техас, основной вариант, 09.10.2001. правило В4-152) текущая высота орбиты международной космической станции (МКС) должна поддерживаться такой, чтобы при текущем баллистическом коэффициенте МКС высота орбиты МКС не опустилась ниже 278 км в течение последующих 90 суток полета для стадии сборки МКС и 180 суток для послесборочной стадии. Указанные сроки необходимы для гарантированного обеспечения изготовления, запуска и стыковки с МКС транспортных кораблей, обеспечивающих жизнеспособность экипажа МКС. Это означает, что циклограмма поддержания требуемой высоты орбиты МКС определяется фактором торможения МКС в атмосфере Земли. В свою очередь, сопротивление атмосферы увеличивается как при увеличении баллистического коэффициента КА, так и при понижении орбиты, поскольку при приближении к Земле плотность атмосферы Земли увеличивается. Более того, в периоды возмущенной атмосферы, когда плотность атмосферы существенно возрастает относительно номинальных прогнозируемых значений, возможны случаи катастрофического понижения орбиты и нарушения указанного требования обеспечения безопасности экипажа и МКС в целом.

Предлагаемое изобретение обеспечивает определение фактической плотности атмосферы на текущей высоте полета КА (в том числе МКС), что в свою очередь повышает точность прогнозирования изменения скорости падения высоты орбиты КА и позволяет выходить из таких опасных ситуаций и/или экономить энергетические ресурсы на подъем орбиты КА до уровня, необходимого для обеспечения жизнеспособности и выполнения целевых задач КА.

Достижение технического результата в предложенном изобретении обеспечивается за счет, в том числе:

- построения предложенной ориентации КА,

- предложенных измерений предложенных параметров,

- предложенных гашения воздействий на свободно перемещаемый внутри корпуса КА калиброванный объект и регистрации его движения относительно КА до момента контакта с элементами корпуса КА,

- предложенного определения предложенных параметров и моментов по результатам выполненных измерений.

Таким образом, достигается технический эффект предлагаемого изобретения, который заключается в определении плотности атмосферы на текущей высоте полета КА по измерениям параметров относительного движения свободно перемещаемого калиброванного объекта внутри корпуса КА.

Выполненная оценка эффективности применения предлагаемого изобретения на российском сегменте (PC) МКС показала, что его использование позволит качественно повысить точность моделей учета влияния атмосферы при определении и прогнозирования движения МКС, обеспечивая при этом уникальную возможность уточнения плотности атмосферы на текущей фактической высоте полета МКС.

При этом в качестве упомянутого калиброванного объекта может использоваться как специально изготовленный и доставленный на PC МКС объект выбранной формы и массы, так и некоторый имеющийся на борту PC МКС объект известной массы.

При гашении воздействий на калиброванный объект исключается (минимизируется) влияние на калиброванный объект воздушных потоков внутри МКС, возникающих из-за работы систем вентиляции или охлаждения аппаратуры. Для этого на время проведения сеанса измерений эти системы должны быть отключены или калиброванный объект должен быть изолирован от возникающих воздушных потоков с помощью прозрачной для съемки воздухонепроницаемой перегородки.

Измерения параметров движения калиброванного объекта относительно МКС могут быть выполнены посредством имеющегося на российском сегменте МКС комплекса фото-видео аппаратуры, например, фото/видеоаппаратура Nikon D3x и кронштейны для жесткой фиксации съемочной аппаратуры внутри МКС.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Источник поступления информации: Роспатент

Showing 81-90 of 111 items.
31.01.2020
№220.017.fbe0

Устройство для вскрытия оболочки экранно-вакуумной теплоизоляции космонавтом в процессе внекорабельной деятельности и способ его эксплуатации

Группа изобретений относится, преимущественно к средствам обеспечения внекорабельной деятельности (ВКД). Устройство содержит режущий инструмент (не показан) и шаблон в виде двух параллельных направляющих (1, 2) уголкового профиля. Между направляющими установлены проставки (не показаны),...
Тип: Изобретение
Номер охранного документа: 0002712362
Дата охранного документа: 28.01.2020
04.02.2020
№220.017.fd0b

Способ измерения степени суммарной герметичности многополостных изделий

Изобретение относится к способам исследования устройств на герметичность. Сущность: заполняют полость с высокими требованиями к степени суммарной герметичности до испытательного давления контрольным газом, содержащим пробный газ в высокой концентрации. Заполняют полость с низкими требованиями к...
Тип: Изобретение
Номер охранного документа: 0002712762
Дата охранного документа: 31.01.2020
27.02.2020
№220.018.0671

Оптическая система формирования и наведения лазерного пучка

Изобретение относится к области оптико-электронного приборостроения и касается оптической системы формирования и наведения лазерного пучка. Система включает в себя устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, внеосевое параболическое зеркало, конструктивно...
Тип: Изобретение
Номер охранного документа: 0002715083
Дата охранного документа: 25.02.2020
14.03.2020
№220.018.0c1c

Способ определения негерметичности изделий, работающих под внешним давлением и внутренним избыточным давлением

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения негерметичности изделий, работающих под внешним давлением и внутренним избыточным давлением, например изделий космической техники. Сущность: вакуумируют средствами (1)...
Тип: Изобретение
Номер охранного документа: 0002716474
Дата охранного документа: 11.03.2020
15.03.2020
№220.018.0c3c

Система контроля состояния внешней поверхности гермооболочки корпуса космического объекта под экранно-вакуумной теплоизоляцией, используемая космонавтом в процессе внекорабельной деятельности, и способ её эксплуатации

Группа изобретений относится к космической технике, в частности к средствам неразрушающего контроля технического состояния конструктивных элементов. Система контроля состояния внешней поверхности гермооболочки корпуса космического объекта под экранно-вакуумной теплоизоляцией содержит устройство...
Тип: Изобретение
Номер охранного документа: 0002716608
Дата охранного документа: 13.03.2020
15.03.2020
№220.018.0c7b

Радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта

Изобретение относится к теплоаккумулирующим устройствам, использующим скрытую теплоту фазовых переходов рабочего вещества для обеспечения требуемого теплового режима источников энергии при их циклической работе. Техническим результатом изобретения является обеспечение компактной конструкции,...
Тип: Изобретение
Номер охранного документа: 0002716591
Дата охранного документа: 13.03.2020
01.07.2020
№220.018.2d05

Система амортизации нагрузок на космический аппарат при посадке на безатмосферные объекты

Изобретение относится к космической технике, а именно к средствам амортизации нагрузок на космический аппарат (КА) при посадке. Система амортизации нагрузок на космический аппарат при посадке на безатмосферные объекты содержит мягкую U-образную в поперечном сечении оболочку, выполненную из...
Тип: Изобретение
Номер охранного документа: 0002725103
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d15

Система амортизации нагрузок на космический аппарат при посадке на безатмосферные объекты

Изобретение относится к средствам амортизации ударных нагрузок при посадке, преимущественно малого космического аппарата (КА). Система содержит прикрепленную к днищу КА мешкообразную оболочку, выполненную из кольчужной сетки и заполненную гранулированными твердотельными сферическими элементами...
Тип: Изобретение
Номер охранного документа: 0002725098
Дата охранного документа: 29.06.2020
03.07.2020
№220.018.2dff

Модульный радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта

Изобретение относится к теплотехнике, а более конкретно к теплоаккумулирующим устройствам. Модульный радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта включает теплоаккумуляторы, тепловые трубы, теплоаккумулирующее вещество, теплоноситель, электронагреватели,...
Тип: Изобретение
Номер охранного документа: 0002725116
Дата охранного документа: 29.06.2020
15.07.2020
№220.018.326b

Устройство фиксации ботинок для обеспечения выхода космонавта из скафандра

Изобретение относится к космической технике, в частности к оборудованию для осуществления выхода космонавта из скафандра. Устройство фиксации ботинок для обеспечения выхода космонавта из скафандра содержит опорную площадку, изогнутую скобу, фиксаторы шпор ботинок скафандра, расположенные на...
Тип: Изобретение
Номер охранного документа: 0002726300
Дата охранного документа: 13.07.2020
Showing 81-90 of 115 items.
09.05.2019
№219.017.4bfc

Способ поддержания трехосной ориентации космического аппарата с силовыми гироскопами и целевой нагрузкой

Изобретение относится к управлению ориентацией космического аппарата (КА). Предлагаемый способ включает математическое моделирование орбиты КА, измерение кинетического момента силовых гироскопов и - на определенных полетных интервалах - параметров углового движения КА. По этим измерениям...
Тип: Изобретение
Номер охранного документа: 0002341419
Дата охранного документа: 20.12.2008
09.05.2019
№219.017.4e4e

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к энергоснабжению космических аппаратов (КА). Предлагаемый способ включает разворот панелей солнечных батарей (СБ) в рабочее положение, когда нормаль к освещенной поверхности СБ совмещена с плоскостью, образуемой осью вращения СБ и направлением на Солнце. При этом...
Тип: Изобретение
Номер охранного документа: 0002325311
Дата охранного документа: 27.05.2008
09.05.2019
№219.017.506a

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора объектов наблюдения с орбитального КА включает пластину с картой земной поверхности, полупрозрачную пластину, установленную поверх карты планеты, и средство...
Тип: Изобретение
Номер охранного документа: 0002463559
Дата охранного документа: 10.10.2012
19.06.2019
№219.017.8b6c

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора наземного объекта наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора наземных объектов наблюдения с орбитального КА включает в себя гибкую ленту с картой поверхности планеты, установленную над ней полупрозрачную пластину и...
Тип: Изобретение
Номер охранного документа: 0002469274
Дата охранного документа: 10.12.2012
20.06.2019
№219.017.8ce6

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к способам технологического контроля технических средств. Способ определения деформации корпуса объекта, преимущественно космического аппарата, включает измерение острого угла α между направлением от ориентира на поверхности объекта к источнику освещения и нормалью к...
Тип: Изобретение
Номер охранного документа: 0002691776
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8e91

Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения

Изобретение относится к космической технике. Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения содержит разъемное соединение, одна из разъемных частей которого жестко соединена с аппаратурой наблюдения, штанги, на которых размещены ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002692205
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.9209

Система ориентирования перемещаемой на борту пилотируемого корабля аппаратуры

Изобретение относится к аэрокосмической технике. Система ориентирования перемещаемой на борту пилотируемого корабля (ПК) аппаратуры включает блок определения текущего положения ориентира относительно ПК, ультразвуковые излучатели, датчик температуры, ультразвуковые приемники, блок...
Тип: Изобретение
Номер охранного документа: 0002692284
Дата охранного документа: 24.06.2019
05.07.2019
№219.017.a582

Способ ориентирования перемещаемой на борту пилотируемого корабля аппаратуры

Изобретение относится к аэрокосмической технике и может быть использовано для обеспечения ориентирования экипажем пилотируемого корабля аппаратуры, перемещаемой относительно движущегося корабля. Ориентирование перемещаемой на борту пилотируемого корабля (ПК) аппаратуры (1) включает определение...
Тип: Изобретение
Номер охранного документа: 0002693634
Дата охранного документа: 03.07.2019
06.07.2019
№219.017.a6d0

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к технологическому контролю, преимущественно космических объектов (КО). Способ включает измерение угла (α) между направлением от ориентира на КО к источнику освещения (Солнцу) и нормалью к поверхности КО в точке ориентира. Измеряют также угол (β) между оптической осью...
Тип: Изобретение
Номер охранного документа: 0002693750
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.aec5

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Предлагаемый способ включает разворот панелей СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с плоскостью, образуемой осью вращения панелей СБ и...
Тип: Изобретение
Номер охранного документа: 0002325312
Дата охранного документа: 27.05.2008
+ добавить свой РИД