×
20.06.2019
219.017.8ce6

СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ КОРПУСА ОБЪЕКТА ПРЕИМУЩЕСТВЕННО КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002691776
Дата охранного документа
18.06.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам технологического контроля технических средств. Способ определения деформации корпуса объекта, преимущественно космического аппарата, включает измерение острого угла α между направлением от ориентира на поверхности объекта к источнику освещения и нормалью к плоскости, касательной к поверхности объекта в точке ориентира, измерение острого угла β между оптической осью установленной на объекте съемочной аппаратуры и направлением от съемочной аппаратуры на источник освещения, сравнение данного угла с задаваемой величиной, определяемой характеристикой поля зрения съемочной аппаратуры, изменение ориентации корпуса объекта до достижения углом α заданного значения, а углом β значения, превышающего сравниваемую с ним величину, выполнение серии снимков ориентира и определение деформации корпуса объекта по смещению изображения ориентира на снимках. Дополнительно измеряют угол γ между нормалью к упомянутой плоскости и направлением от ориентира к съемочной аппаратуре, контролируют значение угла δ между проекциями направлений от ориентира к съемочной аппаратуре и к источнику освещения на упомянутую плоскость, при упомянутом изменении ориентации корпуса объекта ориентацию объекта на моменты выполнения съемок изменяют до превышения задаваемого значения, причем при упомянутом сравнении угла β данный угол сравнивают с полураствором конуса поля зрения съемочной аппаратуры. Технический результат заключается в исключении помех от бликов на выполняемых для определения деформации корпуса объекта снимках ориентиров. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам технологического контроля технических средств и может быть использовано для определения величины деформации различных частей корпуса объекта, например, транспортной и/или аэрокосмической техники.

Определение деформаций корпусов объектов является важной задачей и ее решению посвящено большое количество работ: например, Телянер Б.Е. и др. Технология ремонта корпуса судна. - Л.: Судостроение, 1984; патент РФ 2380273 «Способ ведения измерений в ходе контроля местных остаточных деформаций корпуса судна» и др.

Корпуса разнообразных объектов - транспортных средств, аэрокосмических аппаратов и т.д. - подвержены деформации на разных этапах их жизненного цикла: этапах создания, испытаний, транспортировки, эксплуатации. Деформация корпуса объектов обусловлена двумя основными причинами: перепадом давления внутри объекта и снаружи и изменением температуры на корпусе объекта в процессе его эксплуатации. Указанные факторы приводят к деформации корпуса объекта, в том числе отклонению чувствительных осей установленных на корпусе приборов от их номинального положения, что, например, может ухудшать их целевое использование на объекте.

Известно измерение деформации рельсов (патент РФ 2143359 С1, МПК (1995.01): В61К 9/08) посредством устройства, содержащего две измерительные тележки с установленными на них рамам с измерительными элементами, колеса тележек контактируют с головками рельсов рельсового пути и связаны с измерительными элементами, при этом одна тележка вмонтирована в тележку грузового вагона, движение которого приводит к деформации рельса, а вторая измерительная тележка расположена вне зоны деформации.

Известно определение деформации в системе продольного управления и управления общим шагом несущего винта вертолета (патент РФ 2556043 С1, МПК (2006.01): B64F 5/00), включающее определение максимальной разницы между величинами шага винта, измеренными при выполнении летных испытаний и наземной градуировке, для чего определяют углы установки лопастей несущего винта, углы взмаха, углы качания лопасти, вычисляют линейные перемещения рукавов втулки несущего винта при различных значениях углов общего шага управления несущим винтом; измеряют усилия на бустерах, определяют зависимости отклонений углов установки лопасти и углов отклонения автомата перекоса в продольном направлении от шага винта, проводят наземную градуировку на ненагруженной системе управления, включая забустерную и вращающиеся части управления; по полученной разнице устанавливают величину деформации от забустерной части системы управления до втулки несущего винта, оценивают разницу между допустимым отклонением ручки управления по продольному каналу и полученным в полете, а затем регулируют перемещение ручки управления для получения устойчивого движения вертолета по скорости полета. Способ позволяет повысить точность оценки деформаций в системе продольного управления.

К недостаткам данного и аналогичных способов определения деформации с привлечением измерений угловых характеристик положения конструктивных элементов объекта, что данные способы могут быть использованы для определения деформации только в месте установки соответствующих измерительных датчиков/приборов. Как правило датчики и приборы стоят в определенных/фиксированных местах на корпусе объекта и в процессе его эксплуатации установка новых датчиков и приборов на корпусе объекта может являться сложной/затратной или невыполнимой задачей.

Известен способ определения деформации корпуса объекта -космического аппарата (патент РФ 2605232, МПК (2006.01) B64G 1/22, заявка №2015122901, 15.06.2015 - прототип), согласно которому фиксируют на объекте в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности объекта, попавшие в поле зрения фотокамеры, и фиксируют направления от фотокамеры на реперные точки, в процессе полета измеряют острый угол α между нормалью к плоскости, касательной к внешней поверхности объекта в реперной точке, и направлением на Солнце, измеряют острый угол β между оптической осью фотокамеры и направлением на Солнце, для достижения требуемой освещенности фотографируемой реперной точки изменяют ориентацию объекта до достижения углом α заданного значения, а углом β значения, превышающего величину угла поля зрения фотокамеры, выполняют серию снимков реперной точки за выбранный для определения деформации корпуса объекта интервал времени, последовательно накладывают полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определяют деформацию корпуса объекта. Способ-прототип позволяет определить деформацию корпуса объекта в местах, не ограниченных установкой приборов измерения базовых направлений.

К недостаткам способа-прототипа можно отнести, в частности, то, что при его использовании на выполняемых снимках реперной точки могут возникать блики от солнечного излучения, что может привести к ухудшению точности или невозможности получения/идентификации изображения реперной точки на снимке и, как следствие, понизить точность или сделать невозможным последующее определение деформации корпуса объекта.

Задачей, на решение которой направлено настоящее изобретение, является выполнение гарантированного определения деформации корпуса объекта.

Технический результат предлагаемого изобретения заключается в повышении надежности и точности определения деформации корпуса объекта за счет исключения помех от бликов на выполняемых снимках реперной точки.

Технический результат достигается тем, что в способе определения деформации корпуса объекта преимущественно космического аппарата, включающем измерение острого угла α между направлением от выбираемого на поверхности объекта ориентира на источник освещения и нормалью к плоскости, касательной к поверхности объекта в точке ориентира, измерение острого угла β между оптической осью установленной на объекте съемочной аппаратуры и направлением от съемочной аппаратуры на источник освещения, сравнение данного угла с задаваемой величиной, определяемой характеристикой поля зрения съемочной аппаратуры, изменение ориентации корпуса объекта до достижения углом α заданного значения, а углом β значения, превышающего сравниваемую с ним величину, выполнение серии снимков ориентира и определение деформации корпуса объекта по смещению изображения ориентира на снимках, в отличии от прототипа дополнительно измеряют угол γ между нормалью к упомянутой плоскости и направлением от ориентира к съемочной аппаратуре, контролируют значение угла δ между проекциями направлений от ориентира к съемочной аппаратуре и к источнику освещения на упомянутую плоскость, при упомянутом изменении ориентации корпуса объекта ориентацию объекта на моменты выполнения съемок изменяют до превышения величиной задаваемого значения, определяемого из условия отсутствия попадания солнечного блика от поверхности объекта в поле зрения съемочной аппаратуры, причем при упомянутом сравнении угла β данный угол сравнивают с полураствором конуса поля зрения съемочной аппаратуры.

Суть предлагаемого изобретения поясняется рисунком, на котором обозначено:

1 - ориентир на внешней поверхности объекта;

2 - плоскость, касательная к внешней поверхности объекта в точке ориентира;

3 - съемочная аппаратура;

L - вектор оптической оси съемочной аппаратуры;

N - нормаль к плоскости, касательной к внешней поверхности объекта в точке ориентира;

S* - направление от ориентира на источник освещения;

S** - направление от съемочной аппаратуры на источник освещения;

М - центральное направление блика, отраженного от поверхности объекта в точке ориентира;

Мр - проекция направления М на плоскость, касательную к поверхности объекта в точке ориентира;

V - направление от ориентира к съемочной аппаратуре;

Vp - проекция направления от ориентира к съемочной аппаратуре на плоскость, касательную к поверхности объекта в точке ориентира;

А - угол между проекциями направлений V и М на плоскость, касательную к поверхности объекта в точке ориентира;

α - острый угол между направлением от ориентира на источник освещения и нормалью к плоскости, касательной к внешней поверхности объекта в точке ориентира;

β - острый угол между оптической осью съемочной аппаратуры и направлением от съемочной аппаратуры на источник освещения;

γ - угол между нормалью к плоскости, касательной к поверхности объекта в точке ориентира, и направлением от ориентира к съемочной аппаратуре;

δ - угол между проекциями направлений от ориентира к съемочной аппаратуре и к источнику освещения на плоскость, касательную к поверхности объекта в точке ориентира;

ϕ - полураствор конуса поля зрения съемочной аппаратуры.

Поясним предложенные в способе действия на примере определения деформации корпуса объекта - например, космического аппарата (КА), - освещаемого источником освещения - Солнцем. Отметим, что в этом случае обозначенные на рисунке направления S* и S** параллельны (совпадают).

Устанавливают, например, в фиксированное положение на объекте съемочную аппаратуру (например, фотокамеру), с помощью которой можно выполнять обзор/съемку внешней поверхности объекта.

Выбирают на внешней поверхности объекта ориентиры (реперные точки), съемку которых можно выполнить с помощью данной съемочной аппаратуры. Например, ориентирами могут быть характерные элементы конструкции объекта: границы конструктивных элементов, приборов и т.д.

Измеряют острый угол α между направлением от выбираемого на поверхности объекта ориентира на источник освещения и нормалью к плоскости, касательной к внешней поверхности объекта в точке ориентира.

Измеряют острый угол β между оптической осью установленной на объекте съемочной аппаратуры и направлением от съемочной аппаратуры на источник освещения.

Измеряют угол γ между нормалью к плоскости, касательной к поверхности объекта в точке ориентира, и направлением от ориентира к съемочной аппаратуре.

Контролируют значение угла δ между проекциями направлений от ориентира к съемочной аппаратуре и к источнику освещения на плоскость, касательную к поверхности объекта в точке ориентира.

Сравнивают угол β с задаваемой величиной, определяемой характеристикой поля зрения съемочной аппаратуры, - а именно, с величиной, равной полураствору ϕ конуса поля зрения съемочной аппаратуры.

В процессе жизненного цикла функционирования объекта изменяют ориентацию корпуса объекта до одновременного выполнения следующих условий:

а) достижения углом α заданного значения α*

где [αmin, αmax] - диапазон возможных значений угла α*, при котором обеспечивается требуемый уровень освещенности ориентира - уровень освещенности, необходимый и достаточный для получения/идентификации изображения ориентира на получаемом снимке;

б) достижения углом β значения, превышающего сравниваемую с ним величину полураствора ϕ конуса поля зрения съемочной аппаратуры,

в) превышения величиной, определяемой выражением (функция arccos рассматривается как

положительная величина), задаваемого значения ε, определяемого характеристиками поверхности объекта в точке ориентира из условия отсутствия попадания солнечного блика от поверхности объекта в поле зрения съемочной аппаратуры,

Условие (1) обеспечивает достижение углом α значения α*, при котором реализуется требуемая освещенность снимаемого ориентира.

Условие (2) обеспечивает достижение углом β значений, при которых исключается попадание в поле зрения съемочной аппаратуры прямых лучей от источника освещения, чем исключается возможная засветка снимка и нештатная работа съемочной аппаратуры, которая может привести к ее поломке.

Условие (3) обеспечивает исключение попадания в поле зрения съемочной аппаратуры отраженного от поверхности объекта блика (в рассматриваемом примере - солнечного блика), чем исключается возможная засветка снимка указанным бликом и возможная нештатная работа съемочной аппаратуры, которая может привести к ее поломке.

В общем случае блик рассматривается как некоторый пучок вокруг центрального направления блика М, которое отстоит от направления N нормали к плоскости, касательной к внешней поверхности объекта в точке ориентира, зеркально направлению S* от ориентира на источник освещения (т.е. отстоит от направления N на величину угла α в плоскости, проходящей через вектора N и S*). Условие (3) соответствует тому, что исключается одновременное выполнение условий

одновременное выполнение которых соответствует тому, что направление М (центральное направление блика) отстоит от направления V от ориентира к съемочной аппаратуре на задаваемое угловое расстояние, определяемое характеристиками поверхности объекта в точке ориентира, при котором блик (центральная или по крайней мере существенная боковая его часть) поступает на съемочную аппаратуру и приводит к указанным негативным последствиям.

Соотношение (5) соответствует формуле решения сферических треугольников

cos α=sin2 η+cos2 η cos A,

где η - угол между направлениями М и Мр,

η=90°-α;

А - угол между направлениями Vp и Мр,

A=180°-δ;

α - угол между направлением М и направлением, отстоящим от направления Vp в сторону вектора N на величину угла η.

Условия (4) и (5) соответствуют тому, что при попадании блика на съемочную аппаратуру направление V от ориентира к съемочной аппаратуре отстоит от центрального направления блика Мне более чем на заданный угол ε в проекциях на две взаимно-ортогональные плоскости: условие (4) - в проекции на плоскость, проходящую через вектора М и N; условие (5) - в проекции на плоскость, проходящую через вектор М перпендикулярно предыдущей указанной плоскости.

При нахождении корпуса объекта в описанной ориентации выполняют серию снимков ориентира (реперной точки) в течение выбранного для определения деформации корпуса объекта интервала времени.

После выполнения указанных съемок деформацию корпуса объекта определяют по смещению изображения ориентира на снимках. Для этого последовательно накладывают полученные снимки ориентира (реперной точки) один на другой и деформацию корпуса объекта определяют по смещению изображения ориентира (реперной точки) на полученных снимках.

Таким образом, величину деформации корпуса КА определяют по серии снимков, последовательно полученных при выполнении перечисленных условий съемочной аппаратурой, например, жестко закрепленной на объекте.

Отметим, что каждое из условий (1), (2), (3) направлено на обеспечение возможности максимально точного определения/идентификации изображения ориентира на снимке. При этом данные условия максимально лишены избыточности, что позволяет выполнять указанную съемку и последующее определение деформации корпуса объекта при максимально широком диапазоне возможных положений объекта. Так, исключение попадания в поле зрения съемочной аппаратуры прямых лучей от источника освещения гарантированно обеспечивается достаточной проверкой выполнения условия (2) - условия на превышение углом β величины ϕ полураствора конуса поля зрения съемочной аппаратуры, - что позволяет выполнять требуемую съемку ориентира при угловых положений объекта, определяемых, в том числе, значениями угла β, непосредственно примыкающими к значению β=ϕ.

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение обеспечивает повышение надежности и точности определения деформации корпуса объекта за счет исключения помех от бликов на выполняемых для определения деформации корпуса объекта снимках ориентира, при этом контролируемые условия выполнения съемок максимально лишены избыточности, что позволяет выполнять указанную съемку и последующее определение деформации корпуса объекта при максимально широком диапазоне возможных угловых положений объекта.

Достижение технического результата обеспечивается за счет выполнения предложенных измерений и контроля предложенных углов, предложенного изменения ориентации объекта с обеспечением достижения выполнения предложенных условий в моменты реализации съемок выбранного ориентира (или ориентиров) на поверхности объекта.

Таким образом, выбирая ориентиры (реперные точки) в различных местах корпуса объекта предлагаемый способ позволяет гарантированно получить полную картину деформации объекта в процессе жизненного цикла его функционирования.

Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено по известным технологиям. В настоящее время технически все готово для реализации предложенного способа.

Способ определения деформации корпуса объекта, преимущественно космического аппарата, включающий измерение острого угла α между направлением от выбираемого на поверхности объекта ориентира на источник освещения и нормалью к плоскости, касательной к поверхности объекта в точке ориентира, измерение острого угла β между оптической осью установленной на объекте съемочной аппаратуры и направлением от съемочной аппаратуры на источник освещения, сравнение данного угла с задаваемой величиной, определяемой характеристикой поля зрения съемочной аппаратуры, изменение ориентации корпуса объекта до достижения углом α заданного значения, а углом β значения, превышающего сравниваемую с ним величину, выполнение серии снимков ориентира и определение деформации корпуса объекта по смещению изображения ориентира на снимках, отличающийся тем, что измеряют угол γ между нормалью к упомянутой плоскости и направлением от ориентира к съемочной аппаратуре, контролируют значение угла δ между проекциями направлений от ориентира к съемочной аппаратуре и к источнику освещения на упомянутую плоскость, при упомянутом изменении ориентации корпуса объекта ориентацию объекта на моменты выполнения съемок изменяют до превышения величиной max{|α-γ|, arccos(cosα-cosδsinα)} задаваемого значения, определяемого из условия отсутствия попадания солнечного блика от поверхности объекта в поле зрения съемочной аппаратуры, причем при упомянутом сравнении угла β данный угол сравнивают с полураствором конуса поля зрения съемочной аппаратуры.
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ КОРПУСА ОБЪЕКТА ПРЕИМУЩЕСТВЕННО КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ КОРПУСА ОБЪЕКТА ПРЕИМУЩЕСТВЕННО КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 1-10 of 92 items.
25.08.2017
№217.015.c699

Способ поиска и обнаружения микроорганизмов космического происхождения

Изобретение относится к исследованиям материалов методом проб в условиях космического полета с целью обнаружения микроорганизмов космического происхождения. Способ предусмативает взятие проб с поверхностей орбитальной станции посредством стерилизованного и гермоизолированного на Земле...
Тип: Изобретение
Номер охранного документа: 0002618603
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c69b

Способ и устройство взятия проб вещества с поверхности астрономического объекта

Группа изобретений относится к активным исследованиям астрономического объекта (АО), например астероида или кометы. Способ включает воздействие на поверхность АО направленным электронным лучом с борта космического аппарата, зависшего над поверхностью этого АО. Продукты испарения грунта АО...
Тип: Изобретение
Номер охранного документа: 0002618608
Дата охранного документа: 04.05.2017
19.01.2018
№218.016.099b

Способ проведения режима циклирования герметичной никель-кадмиевой аккумуляторной батареи

Изобретение относится к электротехнике, а именно к эксплуатации герметичных никель-кадмиевых аккумуляторных батарей, используемых для энергообеспечения потребителей на космических аппаратах. Способ проведения режима циклирования герметичных никель-кадмиевых аккумуляторных батарей содержит...
Тип: Изобретение
Номер охранного документа: 0002631918
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.1dcb

Способ контроля текущего состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) с инерционными исполнительными органами включает ориентацию нормали к рабочей поверхности СБ на Солнце, измерение значений тока от СБ и контроль текущего...
Тип: Изобретение
Номер охранного документа: 0002640905
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eac

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с основными продольными перегородками, дополнительными придонными перегородками и заборным устройством, маршевый двигатель и дополнительную автономную двигательную установку системы...
Тип: Изобретение
Номер охранного документа: 0002641022
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.2674

Способ контроля положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов. Способ контроля положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата (КА) включает определение текущих параметров орбиты, съемку с КА ледника и неподвижных...
Тип: Изобретение
Номер охранного документа: 0002644039
Дата охранного документа: 07.02.2018
04.04.2018
№218.016.319c

Блок конденсаторов и способ контроля его исправности (2 варианта)

Изобретение относится к области электротехники и электроники, может быть использовано в устройствах электропитания, в частности в резервированных фильтрах цепей электропитания электронной аппаратуры, в устройствах накопления электроэнергии. Блок конденсаторов содержит конденсаторы,...
Тип: Изобретение
Номер охранного документа: 0002645152
Дата охранного документа: 16.02.2018
10.05.2018
№218.016.3fa9

Механизм герметизации стыка стыковочного агрегата космического корабля

Изобретение относится к стыковочным устройствам космических аппаратов. Механизм герметизации стыка стыковочного агрегата космического корабля содержит стыковочный шпангоут с равномерно распределенными по периметру стыка системами замков, электроприводы, торцевое уплотнение на стыковочной...
Тип: Изобретение
Номер охранного документа: 0002648662
Дата охранного документа: 27.03.2018
10.05.2018
№218.016.446f

Способ контроля телеметрической информации

Изобретение относится к области информационных технологий и вычислительной техники и может быть использовано для контроля телеметрической информации. В способе контроля телеметрической информации, основанном на сравнении реальных значений телеметрических параметров с их эталонными значениями,...
Тип: Изобретение
Номер охранного документа: 0002649843
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4ef1

Способ контроля действий находящегося на борту космического аппарата космонавта

Изобретение относится к управлению космическим аппаратом (КА) с участием космонавта (К). Способ включает определение параметров местоположения К, их сравнение с задаваемыми параметрами и формирование команд К. При этом измеряют параметры текущего положения и ориентации головы К относительно...
Тип: Изобретение
Номер охранного документа: 0002652721
Дата охранного документа: 28.04.2018
Showing 1-10 of 115 items.
20.07.2013
№216.012.57c5

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА, включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002488077
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.7419

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002495378
Дата охранного документа: 10.10.2013
27.07.2014
№216.012.e38f

Способ определения географических координат области наблюдения перемещаемой относительно космического аппарата аппаратуры наблюдения, система для его осуществления и устройство размещения излучателей на аппаратуре наблюдения

Изобретение относится к космической технике. Способ определения географических координат области наблюдения перемещаемой относительно КА аппаратуры наблюдения включает навигационные измерения движения КА, определение положения центра масс и ориентации КА, определение пространственного положения...
Тип: Изобретение
Номер охранного документа: 0002524045
Дата охранного документа: 27.07.2014
10.10.2014
№216.012.fce3

Устройство для доставки объекта

Изобретение относится к области космической техники и может быть использовано для доставки сферических объектов экипажем пилотируемого космического аппарата (КА) из рабочего отсека КА на внешнюю поверхность КА и далее на целевую орбиту объекта. Устройство содержит держатель, на котором...
Тип: Изобретение
Номер охранного документа: 0002530585
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.017f

Способ ориентирования перемещаемого в пилотируемом аппарате прибора и система для его осуществления

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА. Для этого подают команды на...
Тип: Изобретение
Номер охранного документа: 0002531781
Дата охранного документа: 27.10.2014
20.12.2014
№216.013.11bc

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002535963
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.14dd

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002536765
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1dd8

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению ориентацией космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее 1,5 град/сек....
Тип: Изобретение
Номер охранного документа: 0002539068
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1e91

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению движением космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг направления нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее...
Тип: Изобретение
Номер охранного документа: 0002539266
Дата охранного документа: 20.01.2015
20.01.2015
№216.013.1e96

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению ориентацией космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее 1,5 град/сек....
Тип: Изобретение
Номер охранного документа: 0002539271
Дата охранного документа: 20.01.2015
+ добавить свой РИД