×
18.05.2018
218.016.523f

Результат интеллектуальной деятельности: Устройство измерения поверхностного натяжения и коэффициента вязкости металлов

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости. Устройство содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании. Устройство дополнительно снабжено дополнительными камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом. Охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка. Технический результат: обеспечение возможности повышения точности и скорости измерения и обеспечение возможности измерения нагрузки нулевой ползучести, начиная от нулевых значений. 6 ил.

Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости.

Наиболее близким решением к заявленному решению является устройство определения нагрузки нулевой ползучести, описанное в научной статье Гершман Е.И., Жевненко С.Н., «Метод измерения поверхностного натяжения границы раздела «твердое-газ» «insitu»», Физика металлов и металловедение, 2010, согласно которой устройство содержит печь электросопротивления - 10, установленную в подвижный держатель печи - 11, термопары - 12, систему подачу газов, систему нагружения образца, которая представляет собой передвижную каретку - 1, которая может перемещаться в вертикальном направлении при помощи винтов микро- и макро- перемещений - 2, 3, данная каретка позволяет перемещать камеру - 5 и, соответственно, образец - 6 относительно датчика веса - 8, который жестко закреплен на неподвижном основании - 9, и, таким образом, нагружать или разгружать его, упругая гофра - 4, позволяющая перемещать камеру и образец относительно датчика без разгерметизации всей системы, а передача усилия от датчика веса к образцу осуществляется через алундовую штангу - 7.

В устройстве для измерения нагрузки нулевой ползучести, описанном выше, используется одна камера с одним образцом. Собственная масса фольги и масса сцепки (подвесов: петли на фольге и соединительной штанги) создают постоянную нагрузку на фольгу, которая учитывается при расчете нагрузки нулевой ползучести. Одновременно это обуславливает недостаток такого устройства, а именно нагрузку нулевой ползучести, меньшую, чем эти постоянные веса (подвесы, собственный вес фольги) измерять нельзя в принципе. Как следствие, поверхностную энергию можно измерять, если она имеет значение выше определенного положительного уровня.

Таким образом, недостатками известного устройства является невозможность измерения нагрузки нулевой ползучести меньше, чем постоянные веса (подвесы, собственный вес фольги), высокая величина погрешности и возможность измерять поверхностную энергию только, если она имеет значение выше определенного положительного уровня.

Основной задачей изобретения является нахождение нагрузки нулевой ползучести, т.е. нагрузки при которой не происходит ни удлинения, ни сокращения образца в виде фольги или проволоки.

Технический результат - повышение точности и скорости измерения, и обеспечение возможности измерения нагрузки нулевой ползучести, начиная от нулевых значений.

Технический результат достигается тем, что устройство для измерения нагрузки нулевой ползучести металлических материалов, содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую подвижную в вертикальном направлении каретку, расположенную на неподвижной опоре и охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании, и дополнительно снабжено камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом, при этом охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка.

Краткий перечень чертежей

На фиг. 1 представлена общая схема установки для измерения нагрузки нулевой ползучести описанная в прототипе.

На фиг. 2 представлена общая схема заявленного устройства.

На фиг. 3 представлена схема охлаждаемого блока с датчиками.

На фиг. 4 представлен образец для измерения нагрузки нулевой ползучести (25 - толстостенная гильза, 26 - металлическая фольга).

На фиг. 5 представлены кривые зависимости нагрузки на образце от времени. Пунктирной линией указана нагрузка Р0, которая соответствует отсутствию деформации (нулевой ползучести).

На фиг. 6 представлены примеры описания с помощью ЭВМ экспериментальных данных, а) растяжение образца; б) сокращение.

В предлагаемой установке был реализован метод нахождения нагрузки нулевой ползучести «in-situ». Это достигается путем использования датчика веса, который являлся одновременно и нагружающим элементом, и датчиком измерения силы, создаваемым поверхностным натяжением в образце.

Сущность изобретения заключается в том, заявленное устройство (фиг. 2) содержит в качестве нагревающего элемента печь электросопротивления - 13 с двумя независимыми обмотками из нихрома. Внутренняя обмотка используется для регулирования температуры в рабочей части печи, внешняя обмотка используется для поддержания постоянной температуры на 100°С ниже рабочей температуры, таким образом, уменьшая абсолютное значение регулируемой мощности. Эта обмотка находится под постоянным напряжением. Точность поддержания температуры составляет 0.5. При этом печь установлена в подвижный держатель - 14, который обеспечивает перемещение печи в вертикальном направлении. Регулирование и контроль температуры осуществляется при помощи контрольной и регулирующей хромель-алюмелевых термопар 15, горячий спай которых находится в непосредственной близости от образцов, а холодный спай термопар поддерживается при постоянной температуре при помощи термостата.

Для создания в камерах инертной или восстановительной атмосферы была создана система подачи аргона и водорода - 16, в которую входит генератор водорода, баллон с аргоном, газоподводящие трубки, регуляторы расхода газа, жидкостной затвор. Во время работы реактор постоянно продувается водородом или смесью водорода и аргона с малой скоростью (5-10 см3/мин).

Охлаждаемый блок - 17 системы нагружения образца металлического материала содержит до шести отдельных камер - 19 с образцами - 18 выполненными в виде фольги (толщиной 18-30 мкм) свернутой в цилиндр диаметром 4-8 мм., таким образом, измерения могут проводиться на шести различных составах (если требуется измерять изотермы поверхностной энергии, т.е. зависимости поверхностной энергии от концентрации второго компонента в твердом растворе).

Чтобы создать равновесную атмосферу, сгладить температурное поле в камере печи и компенсировать термическое расширение фольга - 26 приваривалась верхним концом к толстостенной гильзе - 25 (Фиг. 4).

При этом образцы устанавливаются (фиг. 3) в камеры в перевернутом виде, образец переворачивают с «ног на голову», т.е. переворачивают гильзу с приваренной в ее фольгой для измерения нагрузки нулевой ползучести, начиная от нулевых значений. Для этого образец помещают на кварцевый шток - 24, в нижней части которого закреплена микрометрическая головка - 21, а датчики веса - 20, которые являются одновременно и нагружающим элементом, и датчиком измерения силы, располагают над образцами, каждый датчик связан с образцом с помощью подвеса - 23. Для регулирования и контроля температуры данного блока охлаждения было создано центральное отверстие - 22, в которое и устанавливаются термопары.

Градуировка датчика проводилась при помощи стандартных гирь весом от 1 до 50 грамм. Одновременно проводилось наблюдение величины прогиба датчика в зависимости от нагрузки, для того чтобы сопоставить, при проведении эксперимента, величину деформации образца в зависимости от нагрузки.

Если нагрузка, создаваемая датчиком на образце, меньше нагрузки нулевой ползучести, то фольга сжимается и показания датчика будут постепенно возрастать, если же нагрузка больше нагрузки нулевой ползучести, то фольга растягивается, и показания датчика будут постепенно убывать (Фиг. 5). Независимо от выбранной величины нагрузки через некоторое время система должна прийти к равновесному значению, соответствующему отсутствию деформации образца, то есть к состоянию, когда сила поверхностного натяжения уравновесит силу, создаваемую датчиком.

Деформация в условиях эксперимента протекает по механизму Набаро-Херинга, который устанавливает линейную зависимость между скоростью деформации образца и напряжением на датчике, коэффициент пропорциональности равен величине обратной вязкости.

где η - коэффициент вязкости

где В - константа теории Набарро-Херринга, Ω - атомный объем, D - коэффициент объемной диффузии, V - средний объем зерна.

При этом напряжение σ/ складывается из напряжения, создаваемого датчиком и напряжения, создаваемого силами поверхностного натяжения:

где, σ - задаваемое датчиком напряжение,

σ0 - напряжение нулевой ползучести, включающее в себя вес тяги и половину веса фольг;

С другой стороны, поскольку датчик является упругой балкой, то можно написать:

Коэффициент пропорциональности А определяется по прогибу датчика под различными стандартными весами и по полученному графику «величина прогиба - приложенная нагрузка» определялся коэффициент А, который является тангенсом угла наклона.

Подставив (3) в (1) и (4), получим систему уравнений:

Сделав подстановку, получим:

Разделив переменные, придем к уравнению:

Проинтегрировав уравнение (7), получим:

Уравнение (8) является кинетической зависимостью напряжения на датчике от времени для образца при определенной температуре. Если образцы имеют одинаковые размеры, вместо напряжения удобно использовать нагрузку в виде веса Р0. Подбирая параметры уравнения (8) с помощью ЭВМ, которые дают наилучшее совпадение экспериментальной кривой и теоретической, можно найти напряжение (нагрузку) нулевой ползучести σ00) и коэффициент вязкости η.

Нагрузка Р связана с напряжением по уравнению , где w - толщина фольги, a h - ширина. Истинная нагрузка нулевой ползучести связана с поверхностными энергиями в соответствии с соотношением:

где - общая площадь границ зерен, при цилиндрической форме зерна. - длина фольги, γСП поверхностная энергия свободной поверхности (СП, поверхности «твердое-газ»), γГЗ - поверхностная энергия границ зерен, с хорошей точностью можно считать .

При этом истинная нагрузка нулевой ползучести и измеряемая вышеуказанным способом отличаются на величину постоянных нагрузок, связанных с подвесами и собственным весом фольги:

В случае перевернутой схемы расположения образца и датчика постоянные веса могут быть включены в собственный вес датчика и программно обнулены.

Кроме того, можно определить нагрузку нулевой ползучести по зависимости скорости деформации от напряжения. Исходя из уравнений (1) и (3) можно написать:

Или с учетом (4)

Сравнивая уравнения (11) и (12) с уравнением прямой: y=G⋅x+D, легко видеть, что графики в координатах от σ или от σ будут линейными, поскольку η не зависит от напряжения в условиях диффузионной ползучести. По отсекаемому отрезку на оси ординат можно определить отношение напряжения нулевой ползучести к вязкости, а тангенс угла наклона этой прямой будет давать величину обратную вязкости. Отношение отсекаемого отрезка (коэффициент D) к тангенсу угла наклона (коэффициент С) позволит определить напряжение нулевой ползучести.

Таким образом, заявленное устройство позволяет провести измерения нагрузки нулевой ползучести, начиная от нулевых значений, а также значительно ускорить процесс получения данных по поверхностной энергии и приведет к снижению величины случайных погрешностей и количества выбросов.

Устройство для измерения нагрузки нулевой ползучести металлических материалов, содержащее печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании, отличающееся тем, что оно снабжено дополнительными камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом, при этом охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка.
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Источник поступления информации: Портал edrid.ru

Showing 171-180 of 322 items.
04.04.2018
№218.016.30b6

Способ извлечения металлов при газификации твердого топлива в политопливном газогенераторе

Изобретение относится к комплексной переработке углеродсодержащих материалов, таких как угли, торф, горючие сланцы, углеродсодержащих техногенных материалов, таких как отходы углеобогащения, отходы деревообработки, твердые коммунальные отходы, и может найти применение в энергетике, химической...
Тип: Изобретение
Номер охранного документа: 0002644892
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30ed

Литниковая система для заливки лопаток из жаропрочных сплавов для газотурбинного двигателя в формы, изготовленные автоматизированным способом

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены...
Тип: Изобретение
Номер охранного документа: 0002644868
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3124

Автоматический нейросетевой настройщик параметров пи-регулятора для управления нагревательными объектами

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002644843
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.425c

Способ выплавки стали в агрегате печь-ковш

Изобретение относится к области электрометаллургии стали, а конкретнее, к выплавке стали в электросталеплавильном агрегате печь-ковш. В способе осуществляют загрузку металлизованного сырья, сыпучих и порошкообразных материалов через полые графитированные электроды, при этом технологические...
Тип: Изобретение
Номер охранного документа: 0002649476
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.46bd

Многослойные магниторезистивные нанопроволоки

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации. Многослойные магниторезистивные нанопроволоки состоят из чередующихся ферромагнитных и медных слоев, при этом в качестве ферромагнитных...
Тип: Изобретение
Номер охранного документа: 0002650658
Дата охранного документа: 16.04.2018
+ добавить свой РИД