×
10.05.2018
218.016.46bd

Результат интеллектуальной деятельности: Многослойные магниторезистивные нанопроволоки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации. Многослойные магниторезистивные нанопроволоки состоят из чередующихся ферромагнитных и медных слоев, при этом в качестве ферромагнитных слоев используются слои никель-железо с толщинами 10-30 нм, а толщины медных слоев – 2-5 нм и суммарное количество пар слоев от 100 до 10 000. Технический результат - получение многослойных магниторезистивных нанопроволок NiFe/Cu с коэффициентами ГМР -18.4…-19.2% и величиной поля насыщения ГМР эффекта 0,001-0,0015 Тл. 3 пр., 3 ил.

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации.

Металлические многослойные низкоразмерные структуры являются в настоящее время одними из наиболее интересных объектов исследования. Благодаря их уникальным магнитным и электрическим свойствам, они находят широкое применение при создании устройств спинтроники. Особую роль здесь играет обнаруженный в них гигантский магниторезистивный эффект (ГМР). Природа этого эффекта обусловлена сильным различием коэффициентов рассеяния электронов проводимости с параллельной и антипараллельной ориентацией спинов относительно вектора намагниченности ферромагнитных слоев. Практический интерес к многослойным структурам обусловлен возможностью их использования в качестве сенсоров магнитного поля, чувствительных элементов головок записи-считывания магнитной информации, решения различного типа задач магнитометрии - определения местоположения объекта по магнитному полю Земли, измерения бесконтактным способом угла поворота и линейного перемещения, распознавания образа ферромагнитных объектов.

В основе практического использования многослойных нанопроволок лежат два основных принципа. Первый, основывается на том факте, что пространственная ориентация спинов электронов в ферромагнитных слоях (наноразмерной величины) многослойных нанопроволок «ферромагнетик/диамагнетик» определяется величинами и направлениями протекающих по ним спин-поляризованных токов, дефектностью ферромагнитных слоев, составом и состоянием межфазных границ. Это позволяет с помощью электрического поля управлять магнитной структурой ферромагнитных нанослоев. Второй принцип обусловлен тем, что инжекция спин-поляризованых электронов в диамагнитные слои создает в них неравновесную намагниченность, позволяющую влиять на величину спинового тока через диамагнитные прослойки за счет изменения их толщины и состава.

Известны многослойные структуры Co/Cu (D.W. Lee, D.J. Kim, US Patent 6,912,770 B2 (05.07.2005) / Application Number: 10/316,783 (11.12.2002)) для использования в качестве сенсоров магнитного поля. Для согласования с полупроводниковыми устройствами на подложки Та, TaN, TiN или WN методом химического парофазного осаждения (CVD-метод) наносят барьерный слой Cu (толщиной от 10 до 100 нм). Далее методом напыления на барьерный слой Cu наносят пленку ферромагнетика (в частности Со), с варьируемыми толщинами (от 10 до 1000 нм). На поверхность пленки Со наносят фоточувствительный материал (фоторезист). После чего он селективно протравливается вместе с пленкой Со, образуя «траншеи». Т.о. на подложке формируются полосы Со (ширина 0.05-1 мкм, толщина 0.05-1 мкм). После этого в гальваностатическом режиме «траншеи» заполняются диамагнетиком (в частности Cu). После этого методом механохимического полирования доводят многослойную структуру Со/Cu до необходимой толщины и параллельности поверхностей и далее на верхнюю поверхность наносят слой диэлектрика.

Недостатком данного материала является то, что процесс формирования многослойной структуры сопряжен с большим количеством технологических операций, что негативно сказывается на объемах и скорости выпускаемой продукции. Так же, ширина слоев диамагнитного металла зависит от параметров шаблона (в процессе селективного протравливания), и при этом невозможно получить слои Сu шириной менее 0.05 мкм.

Известены многослойные нанопроволоки системы Co/Cu (Х.-Т. Tang, et al, J of Appl. Phys., 2006, V. 99, 033906-1-033906-7). Многослойные нанопроволоки формируются в порах оксида алюминия методом электроосаждения из комбинированного электролита в потенциостатическом режиме. Поочередно формируются слои металлов Со и Cu. Диаметр пор составляет 300 нм. Максимальный эффект ГМР в 13.5% при комнатной температуре достигается при соотношении толщин слоев кобальта и меди 8 нм/10 нм. При этом величина поля насыщения ГМР эффекта составляла 0.28-0.38 Тл.

Недостатком данного материала является относительно высокая коэрцитивная сила чистого кобальта, что обуславливает высокие значения полей насыщения (0.28-0.38 Тл) ГМР эффекта в многослойных нанопроволоках Со/Cu.

Наиболее близкими к предложенному материалу являются многослойные магниторезистивные нанопроволоки, состоящие из чередующихся ферромагнитных слоев - CoNi и слоев меди - Cu, формируемые методом электролитического осаждения (Патент BY 19142 «Способ получения многослойных нанопроволок для сенсоров магнитного поля», Грабчиков С.С., Труханов А.В., Шарко С.А., от 30.04.2015). В качестве прототипа нами принят материал на основе многослойных нанопроволок CoNi/Cu, формирующихся методом электролитического осаждения в потенциостатическом режиме из комбинированного электролита в поры матриц анодного оксида алюминия диаметром 100±10 нм. Толщина каждого ферромагнитного и медного слоя составляет 25±1 нм и 2±0,3 нм соответственно.

Недостатком данного материала является относительно невысокий (по сравнению с предлагаемым материалом) коэффициент ГМР (-15,3%) и значительная величина поля насыщения ГМР эффекта (0.03-0.05 Тл).

Технический результат - получение многослойных магниторезистивных нанопроволок NiFe/Cu с коэффициентами ГМР -18.4…-19.2% и величиной поля насыщения ГМР эффекта 0,001-0,0015 Тл.

Технический результат достигается тем, что в качестве ферромагнитных слоев используются слои NiFe с толщинами 10-30 нм, а толщины медных слоев - 2-5 нм и суммарное количество пар слоев от 100 до 10 000.

Сущность изобретения состоит в следующем. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Электроосаждение осуществляют с помощью программно-аппаратного комплекса на базе потенциостата ПИ-50-1.1 (ГОСТ 22261-82) с электрохимической ячейкой и программатора ПР-8 с (ГОСТ 25272-14), предназначенного для задания сигнала. Электрод сравнения хлорсеребряный ЭВЛ-1М 3.1 (ТУ25-05 (1Е2.840.217)-78), имеющий потенциал 201±3 мВ относительно нормального водородного электрода предназначен для задания и поддержания потенциала осаждения при работе в потенциостатическом режиме. Силу тока в электрической цепи контролируют амперметром М325-1,5 (ГОСТ 871 1-93), имеющим класс точности 0.2. Для получения многослойных нанопроволок используют метод импульсного электроосаждения (А V Trukhanov, S S Grabchikov, S A Sharko, S V Trukhanov, К L Trukhanova, О S Volkova, and A Shakin, Magnetotransport properties and calculation of the stability of GMR coefficients in CoNi/Cu multilayer quasi-one-dimension structures, Materials research express Vol. 3, №6, (2016)) из комбинированного электролита. Принцип данного метода основан на том, что ферромагнитные металлы группы железа (Fe, Co. Ni, а также их сплавы) и благородные металлы (Cu, Ag, Au, Pt) могут быть использованы соответственно в качестве ферромагнитных и диамагнитных слоев. Получение многослойных нанопроволок методом электролитического осаждения из одного и того же электролита основывается на том факте, что равновесный потенциал восстановления ионов ферромагнитных и благородных металлов отличается более чем на 400 мВ. Поэтому при малых потенциалах осаждения будут восстанавливаться только такие металлы, как Cu, Ag и т.д. При более отрицательных потенциалах осаждаются как Cu, так и ферромагнитные металлы или их сплавы. Но если задавать концентрацию ионов Cu в электролите намного меньше, чем концентрация ферромагнитных ионов (порядка 1% от концентрации ионов магнитного металла), то из-за диффузионных затруднений переноса ионов Cu к катоду скорость осаждения слоев Cu будет ограничена, независимо от величины прикладываемого потенциала.

Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; Н3 BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель).

Соотношение по концентрациям солей NiSO4⋅7H2O и FeSO4⋅7H2O (210/15 г/л) в электролите было обусловлено тем, что при данной концентрации формируются составы сплавов (Ni80Fe20) с минимальной коэрцитивной силой и максимальными значениями магнитной проницаемости.

Режимы осаждения многослойных нанопроволок были следующими: ϕNiFe=-1.8…-2.3 В; ϕCu=-0.2-0.4 В. При этих условиях средняя скорость осаждения отдельных слоев составляет VNiFe=~8-10 нм/с; vCu=~0.1-0.5 нм/с. Толщина ферромагнитного слоя составляет 10-30 нм, толщина слоя Си составляет 2-5 нм. Толщина матрицы оксида алюминия составляет ~2-120 мкм. Диаметр пор в матрицах ~100±10 нм.

Коэффициент ГМР многослойных нанопроволок рассчитывался на основе данных измерений электрического сопротивления двухконтактным методом при фиксированных значениях магнитных полей в интервале до 0.13 Тл при комнатной температуре по следующей формуле:

где R(B) - электрическое сопротивление многослойных нанопроволок NiFe/Cu во внешнем магнитном поле В, R0 - электрическое сопротивление многослойных нанопроволок NiFe/Cu без магнитного поля.

Пример 1

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 20 нм; диамагнитный слой Cu - 2 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 20-25 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 1,6-2 с. Время осаждения одного парциального диамагнитного слоя Cu - 4-8 с. Коэффициент ГМР составляет -18,7%. Величина поля насыщения ГМР эффекта - 0,0013 Тл (Фиг. 1)

Пример 2

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 30 нм; диамагнитный слой Cu - 5 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 35-38 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 3-3,75 с. Время осаждения одного парциального диамагнитного слоя Cu - 12,5-25 с. Коэффициент ГМР составляет -18,4%. Величина поля насыщения ГМР эффекта - 0,0015 Тл (Фиг. 2)

Пример 3

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 30 нм; диамагнитный слой Cu - 2 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 30-35 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 3-3,75 с. Время осаждения одного парциального диамагнитного слоя Cu - 5-10 с. Коэффициент ГМР составляет - 19,2%. Величина поля насыщения ГМР эффекта - 0,0013 Тл (Фиг. 3)

Многослойные магниторезистивные нанопроволоки, состоящие из чередующихся ферромагнитных и медных слоев, отличающиеся тем, что ферромагнитные слои выполнены в виде слоев NiFe с толщиной 10-30 нм, а медные слои - с толщиной 2-5 нм, при этом суммарное количество пар слоев составляет от 100 до 10 000.
Многослойные магниторезистивные нанопроволоки
Многослойные магниторезистивные нанопроволоки
Многослойные магниторезистивные нанопроволоки
Источник поступления информации: Роспатент

Showing 1-10 of 322 items.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Showing 1-10 of 45 items.
27.01.2013
№216.012.2131

Радиопоглощающий феррит

Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Повышение радиопоглощающих свойств феррита в интервале частот от 30 МГц до 1000 МГц....
Тип: Изобретение
Номер охранного документа: 0002473998
Дата охранного документа: 27.01.2013
20.02.2014
№216.012.a1e0

Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом

Изобретение может быть использовано в магнитной наноэлектронике для магнитных регистрирующих сред с высокой плотностью записи, для магнитных сенсоров, радиопоглощающих экранов, а также в медицине. Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом, включает получение...
Тип: Изобретение
Номер охранного документа: 0002507155
Дата охранного документа: 20.02.2014
20.06.2014
№216.012.d4c4

Способ получения тонкопленочных полимерных нанокомпозиций для сверхплотной магнитной записи информации

Изобретение относится к области магнитной записи информации, конкретно к способу получения пленок для магнитной записи информации. Способ получения полимерных нанокомпозиций в виде тонких пленок для сверхплотной записи информации включает получение прекурсора, состоящего из поливинилового...
Тип: Изобретение
Номер охранного документа: 0002520239
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.dde8

Магнитооптический материал

Изобретение относится к области магнитной микроэлектроники, в частности к прикладной магнитооптике, и может быть использовано для записи информации как в цифровом, так и в аналоговом режимах. Магнитооптический материал представляет собой эпитаксиальную монокристаллическую пленку феррита-граната...
Тип: Изобретение
Номер охранного документа: 0002522594
Дата охранного документа: 20.07.2014
27.10.2014
№216.013.0313

Способ получения наноразмерных пленок bi-содержащих ферритов-гранатов

Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого...
Тип: Изобретение
Номер охранного документа: 0002532185
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0315

Способ получения наноразмерных пленок феррита

Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных...
Тип: Изобретение
Номер охранного документа: 0002532187
Дата охранного документа: 27.10.2014
20.12.2014
№216.013.11f7

Способ получения ферритовых изделий путем радиационно-термического спекания

Изобретение относится к порошковой металлургии, в частности к получению магнитомягких ферритовых материалов. Может использоваться в электронной и радиопромышленности. Готовят шихту из синтезированного ферритового материала и 0,01-0,05 мас.% легкоплавкой добавки, предварительно...
Тип: Изобретение
Номер охранного документа: 0002536022
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1278

Способ спекания радиопоглащающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002536151
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.171c

Способ спекания радиопоглощающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002537344
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.20bc

Спектральный эллипсометр с устройством магнитодинамических измерений

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п....
Тип: Изобретение
Номер охранного документа: 0002539828
Дата охранного документа: 27.01.2015
+ добавить свой РИД