×
10.05.2018
218.016.4d86

Результат интеллектуальной деятельности: Биорезорбируемый материал и способ его получения

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси компонентов, сушку, прессование и последующий отжиг, при этом исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460-480 мин с реверсом направления через каждые 15 мин и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а обжиг осуществляют при температуре 580-600°С в течение 350 – 360 мин со скоростью нагрева 100 – 110°С/ч. Биорезорбируемый материал имеет высокую микротвердость и может быть использован для реконструкции и замещения участков костной ткани. 2 н.п. ф-лы, 1 табл., 4 ил., 4 пр.

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов и к способам их получения, которые могут применяться для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата, а также в качестве покрытия имплантатов для улучшения связи с костной тканью.

Известен биорезорбируемый материал, включающий размещенные в органической матрице наночастицы аморфного гидроксиапатита кальция, частично изоморфно замещенного ионами металлов II группы (МII) общей формулы Ca10-xMIIx(PO4)6(OH)2, где МII – Mg2+ и/или Zn2+; 0,01≤ x ≤2 (патент RU 2510740; МПК C01B 25/12, C08L 99/00, A61K 6/033, A61K 47/48, B82B 3/00; 2014 год).

Однако наночастицы известного материала включены в органическую матрицу биополимера и обладают сферической формой, что затрудняет непосредственный доступ к ним клеток – остеобластов, а следовательно, снижает эффективность закрепления клеток на наночастицах и скорость формирования собственной костной ткани. Кроме того, итоговое соотношение Ca/P отличается от соотношения в костной ткани человека (Ca/P=1,67).

Известен остеогенный биорезорбируемый материал для замещения дефектов костной ткани, выполненный из композиции, включающей в качестве наполнителя порошок биологического гидроксиапатита с размером частиц 1-40 мкм, полученного из деминерализованных костей крупного рогатого скота, фосфорно-кислый кальций, аминокислоту-аргинин, раствор казеина в 5%-ном водном растворе аммиака (патент RU 2504405; МПК A61L 27/12, A61K 31/198, A61K 38/16, A61P 41/00; 2014 год).

Однако известный биорезорбируемый материал используется как инъекционный материал. Таким образом, он может быть использован только для заполнения незначительных объемов при замещении дефектов костных тканей. Кроме того, использование биологического гидроксиапатита, полученного из деминерализованных костей крупного рогатого скота, обусловливает наличие дополнительного технологического процесса его получения.

Наиболее близким техническим решением к предлагаемому является материал на основе гидроксиапатита общей формулы Ca10(PO4)6(OH)2 (патент RU 2104924, МПК C01B 25/32, 1998 год), который может быть использован в качестве биорезорбирумого материала.

Однако известный материал характеризуется высокой удельной поверхностью (~ 100 м2/г) и, как следствие, недостаточно высокой микротвердостью (~ 140 МПа), что ухудшает его механические свойства при использовании в качестве имплантата.

Известен также способ получения гидроксиапатита, содержащего оксид цинка, включающий взаимодействие растворимых солей кальция и цинка с растворимыми фосфатами, формование изделий и обжиг в засыпке, представляющей собой смесь карбоната кальция и брушита (патент RU 2372313; МПК C04 B 35/447, A61L 27/12; 2009 год).

Однако известный способ включает высокотемпературный обжиг (1100 – 1200оС) и обеспечивает возможность получения достаточно крупных частиц размером 0.3 – 0.4 мкм, что обусловливает высокую удельную поверхность материала.

Таким образом, перед авторами была поставлена задача разработать биорезорбируемый материал на основе гидроксиапатита, обладающий высокой микротвердостью за счет снижения его удельной поверхности и повышения плотности. Кроме того, была поставлена задача разработать способ получения биорезорбируемого материала, включающий его низкотемпературный обжиг.

Поставленная задача решена в предлагаемом биорезорбируемом материале на основе гидроксиапатитата (ГАП) состава Ca10(PO4)6(OH)2, который дополнительно содержит монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего.

Поставленная задача также решена в предлагаемом способе получения биорезорбируемого материала на основе гидроксиапатитата (ГАП), включающего получение исходной смеси компонентов, сушку, прессование и последующий отжиг, в котором исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460 - 480 минут с реверсом направления через каждые 15 минут и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а отжиг осуществляют при температуре 580-600оС в течение 350 – 360 минут со скоростью нагрева 100 – 110оС/ч.

В настоящее время из патентной и научно-технической литературы неизвестен биорезорбируемый материал на основе гидроксиапатитата (ГАП), который дополнительно содержит монооксид титана достехиометрического или сверхстехиометрического. Неизвестен также способ получения биорезорбируемого материала на основе гидроксиапатитата (ГАП), в котором исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460 - 480 минут с реверсом направления через 15 минут и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а обжиг осуществляют при температуре 580-600оС в течение 350 – 360 минут.

Исследования, проведенные авторами предлагаемого технического решения, позволили сделать вывод, что использование нестехиометрического монооксида титана для армирования ГАП позволяет существенно снизить температуру полного упрочнения и получить материал с высокой плотностью без проведения высокотемпературного отжига. Монооксид титана содержит вакансии как в подрешётке титана, так и в подрешётке кислорода, что способствует спеканию по твердофазному механизму при более низкой температуре, а возможность варьировать стехиометрию добавок позволяет влиять на фазовый состав и механические свойства нанокомпозита. Изменение стехиометрии и варьирования содержания монооксида титана позволяет улучшить рабочие характеристики материала, в частности микротвердость, за счет возможности управлять процессами фазообразования. При этом при содержании монооксида титана менее 10 мас.% не наблюдается повышения микротвердости. При содержании монооксида титана более 20 мас.% возможно изменение скорости биорезорбируемости по сравнению со скоростью регенерации костной ткани.

Механосинтез исходных компонентов в предлагаемых условиях позволяет получить уже промежуточный продукт высокой плотности слоистой структуры, которая облегчает холодное прессование и обеспечивает возможность проведения отжига при более низких температурах. Как известно, при производстве керамики из ГАП уплотнение начинается после 800°С. Максимальная плотность, а следовательно, и прочность керамики на основе ГАП достигается при температуре 1250-1300°С. Анализ морфологии поверхности получаемого материала показал присутствие спёкшихся либо частично спёкшихся частиц и агломератов размером от 50 нм до 1 мкм уже после отжига при 400°С. При этом наблюдается вторичная кристаллизация ГАП в виде стержневидных образований в порах и промежутках между агломератами. После отжига при 600°С уменьшается количество пор, микроструктура становится более плотной. При этом агломераты состоят из спекшихся частиц с размерами от 20-40 нм, поскольку спекание в предлагаемом температурном интервале не приводит к росту наночастиц, то есть наносостояние конечного продукта после отжига сохраняется. (фиг.1). Таким образом, выбранный интервал температур отжига позволяет избежать разложения ГАП, то есть сохранить его биологическую активность и создать условия для процессов диффузии и упрочнения керамики.

Предлагаемый биорезорбируемый материал на основе гидроксиапатита может быть получен следующим образом. Исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего, помещают в планетарную шаровую мельницу. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 - 480 минут с реверсом направления через каждые 15 минут и скоростью вращения 530-540 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в таблетки. После чего отжигают в вакуумной печи при температуре 580-600оС в течение 350 – 360 минут. Полученный продукт был исследован с использованием рентгеновского фазового анализа (РФА), растровой электронной микроскопии (РЭМ), метода Брунауэра, Эммета и Теллера (БЭТ), пикнометрии, измерения микротвердости.

В таблице приведены рабочие характеристики известного материала-прототипа и предлагаемого материала (при t-25оС).

На фиг. 1 приведена микрофотография порошка биорезорбируемого материала состава ГАП-10 масс. %TiO0,99.

На фиг. 2 приведен график изменения микротвердости предлагаемого материала в зависимости от состава и температуры отжига.

На фиг. 3 приведен график изменения плотности предлагаемого материала в зависимости от состава и температуры отжига.

Одним из требований, предъявляемых к современным материалам биомедицинского назначения, является высокая биоактивность, учитывающая наряду с биологическими процессами роста и дифференциации клеток скорость растворения материала в средах близких к физиологической среде организма.

Для исследования биоактивности предлагаемого материала состава ГАП/TiOх была изучена растворимость ГАП/TiO1.23 10 мас.% в модельном растворе (изотонический раствор 0,9% NaCl с pH 7) по сравнению с известным материалом (см. фиг. 4). На фиг.4 приведен график кинетики растворения предлагаемого материала и известного в изотоническом растворе на начальном этапе: красный-Ca, ГАП-20 мас.% TiO1,23; черный- Ca, ГАП; голубой-Ti, ГАП-20 мас.% TiO1,2,3. Из приведенных графиков следует, что растворимость предлагаемого материала по сравнению с растворимостью неармированного ГАП не изменяется. Следовательно, предлагаемый материал соответствует по своим свойствам используемым биорезорбируемым материалам.

Получение предлагаемого биорезорбируемого материала и его свойства иллюстрируются следующими примерами конкретного исполнения.

Пример 1

Берут исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 в количестве 4,5 г и монооксид титана состава TiО0,99 в количестве 0,5 г, что составляет 10 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 минут с реверсом направления через каждые 15 минут и скоростью вращения 530 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 580°С в течение 350 минут, при этом скорость нагрева составляет 100°С/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.

Получают биорезорбируемы материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO0,99 -10; с размером зерна 20-40 нм, микротвердостью 202,80±15,18 МПа, плотностью 3.07 г/см3, удельной поверхностью 21,26±0,07 м2/г.

Пример 2

Берут исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 в количестве 2,0 г и монооксид титана состава TiO0,99 в количестве 0,5 г, что составляет 20 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 480 минут с реверсом направления через каждые 15 минут и скоростью вращения 540 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 600°С в течение 360 минут, при этом скорость нагрева составляет 110°С/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.

Получают биорезорбируемый материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO0,99 -20; с размером зерна 20-40 нм, микротвердостью 192,50±13,62 МПа, плотностью 3.28 г/см3, удельной поверхностью10,05±0,17 м2/г.

Пример 3

Берут исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 в количестве 4,5 г и монооксид титана состава TiО1,23 в количестве 0,5 г, что составляет 10 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 минут с реверсом направления через каждые 15 минут и скоростью вращения 530 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 580оС в течение 350 минут, при этом скорость нагрева составляет 100оС/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.

Получают биорезорбируемы материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO1.23 -10; с размером зерна 20-40 нм, микротвердостью 189,50±8,38 МПа, плотностью 3.1 г/см3, удельной поверхностью 16,71±0,06 м2/г.

Пример 4

Берут исходные компоненты гидроксиапатит (ГАП)состава Ca10(PO4)6(OH)2 в количестве 2,0 г и монооксид титана состава TiO1,23 в количестве 0,5 г, что составляет 20 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 минут с реверсом направления через каждые 15 минут и скоростью вращения 530 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 580°С в течение 350 минут, при этом скорость нагрева составляет 100°С/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.

Получают биорезорбируемый материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO1.23-20; с размером зерна 20-40 нм, микротвердостью 210,50±10,76 МПа, плотностью 3.22 г/см3, удельной поверхностью 10,09±0,18 м2/г.

Таким образом, авторами предлагается плотный биорезорбируемый материал, имеющий высокую микротвердость, и способ его получения, который может быть использован в медицине для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата, а также в качестве покрытия имплантов для улучшения связи с костной тканью решена.

Таблица

Соединение
Плотность,
г/см3

Микротвердость исходных образцов, MПа
Удельная поверхность, м2
Ca10(PO4)6(OH)2 (ГАП) 2,93 138,43±12,65 98,80±0,65
10% TiO0,99 +ГАП 3,07 202,80±15,18 21,26±0,07
20% TiO0,99 +ГАП 3,28 192,50±13,62 10,05±0,17
10% TiO1,23+ГАП 3,10 189,50±8,38 16,71±0,06
20% TiO1,23+ГАП 3,22 210,50±10,76 10,09±0,18
10% TiO1,09 +ГАП 3,09 188,90±9,57 18,98±0,07
20% TiO1,09 +ГАП 3,25 203,65±9,81 10,02±0,09


Биорезорбируемый материал и способ его получения
Биорезорбируемый материал и способ его получения
Биорезорбируемый материал и способ его получения
Биорезорбируемый материал и способ его получения
Источник поступления информации: Роспатент

Showing 11-20 of 99 items.
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4994

Способ извлечения радионуклидов и микроэлементов

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом...
Тип: Изобретение
Номер охранного документа: 0002550343
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5738

Способ получения тонких пленок сульфида свинца

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата...
Тип: Изобретение
Номер охранного документа: 0002553858
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.6e94

Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni(МO))·γ-АlO, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1. Изобретение также относится к способу получения такого...
Тип: Изобретение
Номер охранного документа: 0002559878
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b87

Способ получения коллоидного раствора наночастиц сульфида свинца

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002567326
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
Showing 11-20 of 24 items.
26.08.2017
№217.015.db20

Способ извлечения циркония из кислых водных растворов

Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства. Предлагается способ извлечения циркония из кислых водных...
Тип: Изобретение
Номер охранного документа: 0002623978
Дата охранного документа: 29.06.2017
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
25.06.2018
№218.016.66b0

Способ разделения скандия и сопутствующих металлов

Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими...
Тип: Изобретение
Номер охранного документа: 0002658399
Дата охранного документа: 21.06.2018
18.01.2019
№219.016.b0ee

Стоматологический гель для реминерализации твердых тканей зубов и способ реминерализации твердых тканей зубов

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для реминерализации твердых тканей зубов с целью профилактики и лечения кариеса в стадии пятна, гиперестезии твердых тканей зуба. Предлагаемый стоматологический гель содержит в качестве гидрофильной основы...
Тип: Изобретение
Номер охранного документа: 0002677231
Дата охранного документа: 16.01.2019
30.03.2019
№219.016.f909

Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002683255
Дата охранного документа: 27.03.2019
16.05.2019
№219.017.5221

Способ извлечения оксида алюминия из отходов глиноземного производства

Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002687470
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53bf

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную...
Тип: Изобретение
Номер охранного документа: 0002687737
Дата охранного документа: 16.05.2019
27.11.2019
№219.017.e6eb

Способ переработки бокситов

Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита. Последующее автоклавное выщелачивание осуществляют при соотношении жидкое...
Тип: Изобретение
Номер охранного документа: 0002707223
Дата охранного документа: 25.11.2019
27.03.2020
№220.018.1087

Биоактивное покрытие для восстановления костной ткани

Изобретение относится к фармацевтической промышленности, а именно к биоактивному покрытию для восстановления костных тканей. Биоактивное покрытие для восстановления костных тканей, содержащее гидроксиапатит или фторапатит с размером частиц не более 10 мкм и 5-10 масс.% водный раствор желатина,...
Тип: Изобретение
Номер охранного документа: 0002717676
Дата охранного документа: 25.03.2020
27.06.2020
№220.018.2c35

Биоактивный композиционный материал

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов. Предложен биоактивный композиционный материал на основе гидроксиапатита, в котором диспергирован монооксид титана. Материал содержит в качестве монооксида титана сверхстехиометрический...
Тип: Изобретение
Номер охранного документа: 0002724611
Дата охранного документа: 25.06.2020
+ добавить свой РИД