×
10.05.2018
218.016.4d6f

Результат интеллектуальной деятельности: Погружная эжекционная установка

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазовой отрасли, в частности к скважинным струйным установкам, и предназначено для добычи пластовых флюидов из скважин с одновременным интенсифицирующим воздействием на прискважинную зону продуктивного пласта. Погружная эжекционная установка для добычи пластового флюида из скважины содержит установленный на внутренней колонне насосно-компрессорных труб (НКТ) эжекторный насос. При этом эжекторный насос включает корпус, в котором установлены соосно внутренней колонне (НКТ) сопло и камера смешения с диффузором, параллельно которой выполнены аксиальные каналы для подвода рабочего потока. При этом для подвода эжектируемого потока каналы в корпусе выполнены аксиальными, со стороны верхнего конца они сообщены с приемной камерой эжекторного насоса, а со стороны нижнего конца - со всасывающей полостью корпуса погружной эжекционной установки, в котором также расположена подвижная тарель. Тарель открывается при перепаде давления и выполняет функцию обратного клапана. При этом в качестве сопла используется сопло-кавитатор, состоящее из первого входного участка, выполненного в виде коноидального насадка для максимального значения коэффициента скорости и расхода движущейся жидкости, радиусом скругления, равным 2÷5 диаметрам наименьшего сечения (2÷5 d); второго цилиндрического участка диаметром d, длиной l=2÷3d; третьего конически расходящегося участка с углом раскрытия 1330' и длиной l=8÷12d. При этом кавитационный режим истечения в проточной части эжекторного насоса сводится к нахождению коэффициента эжекции, при котором возникает кавитация, по приведенному математическому выражению. Техническим результатом является повышение дебита скважины, увеличение коэффициента извлечения пластового флюида, возможность регулирования значения депрессии, снижение эксплуатационных затрат. 2 ил.

Изобретение относится к нефтегазовой отрасли, в частности к скважинным струйным установкам, и предназначено для добычи пластовых флюидов из скважин с одновременным интенсифицирующим воздействием на прискважинную зону продуктивного пласта.

Добыча пластового флюида с одновременным воздействием на прискважинную зону продуктивного пласта осуществляется путем совмещения технологий эжектирования флюида и обработки прискважинной зоны пласта виброимпульсным воздействием при организации кавитационного истечения в проточной части струйного насоса.

Известно устройство для добычи нефти (Патент №89605), включающее добычной насос, установленный в скважине на колонне насосно-компрессорных труб, при этом в качестве добычного насоса использован струйный насос, установленный в скважине на нижнем конце колонны насосно-компрессорных труб на глубине, обеспечивающей создание необходимой депрессии на пласт, и электронасос, установленный на устье скважины на верхнем конце колонны насосно-компрессорных труб для подачи жидкости в струйный насос. Реализация данного устройства обеспечивает качественное повышение дебита и коэффициента нефтеотдачи пласта.

Действительно, при добыче нефти предлагаемым устройством можно осуществлять регулирование депрессии, создаваемой струйным насосом, тем самым увеличивая дебит скважины. Но, в процессе длительной эксплуатации скважин и добычи нефти, отсутствует возможность интенсифицирующего воздействия на структуры пласта, в результате чего текущая добыча и коэффициент извлечения пластового флюида будут снижаться.

Наиболее близким по технической сущности является погружная эжекционная установка для очистки забоя скважин от песчанных пробок в условиях аномально низкого пластового давления (Патент №2563896). Устройство содержит установленные на колонне насосно-компрессорных труб (НКТ) эжекторный насос, включающий корпус, в котором установлены соосно внутренней колонне НКТ сопло и камера смешения с диффузором. В корпусе параллельно камере смешения выполнены осевые каналы для подвода рабочего потока и сообщенные с ними радиально расположенные поперечные боковые каналы для подвода эжектируемого потока. Со стороны верхнего конца осевые каналы сообщены с кольцевым пространством между внешней НКТ и внутренней НКТ, а со стороны нижнего конца - с рабочей камерой. В основании корпуса установлены опорная пята, сообщенная с соплом эжекторного насоса посредством подпружиненного толкателя с возможностью движения вверх и вниз под действием истекающей рабочей среды и функциональная вставка, внутри которой под углом 30° расположено не менее четырех генераторов кавитации. Повышается эффективность процесса разрушения песчаной пробки, снижается абразивное воздействие песчаной пульпы, создается более глубокая депрессия на пласт.

К недостаткам прототипа можно отнести отсутствие возможности воздействия на прискважинную зону продуктивного горизонта с целью интенсификации добычи пластового флюида, а также осуществление непосредственно процесса добычи пластового флюида.

Задачей настоящего изобретения является разработка погружной эжекционной установки для добычи пластовых флюидов из скважин, с одновременным осуществлением интенсифицирующего воздействия на прискважинную зону продуктивного пласта.

Техническим результатом является повышение дебита скважины, увеличение коэффициента извлечения пластового флюида, возможность регулирования значения депрессии, снижение эксплуатационных затрат.

Указанный технический результат достигается тем, что погружная эжекционная установка для добычи пластового флюида из скважины, содержащая установленный на внутренней колонне насосно-компрессорных труб эжекторный насос, включающий корпус, в котором установлены, соосно внутренней колонне насосно-компрессорных труб, сопло и камера смешения с диффузором, параллельно которой выполнены аксиальные каналы для подвода рабочего потока, отличается тем, что для подвода эжектируемого потока каналы в корпусе выполнены аксиальными, со стороны верхнего конца они сообщены с приемной камерой эжекторного насоса, а со стороны нижнего конца - со всасывающей полостью корпуса погружной эжекционной установки, в котором также расположена подвижная тарель, открывающаяся при перепаде давления и выполняющая функцию обратного клапана, при этом в качестве сопла используется сопло-кавитатор, состоящее из первого входного участка, выполненного в виде коноидального насадка для максимального значения коэффициента скорости и расхода движущейся жидкости, радиусом скругления, равным 2÷5 диаметрам наименьшего сечения (2÷5 d); второго цилиндрического участка диаметром d, длиной lц=2÷3d; третьего конически расходящегося участка с углом раскрытия 13°30' и длиной lд=8÷12d, при этом кавитационный режим истечения в проточной части эжекторного насоса сводится к нахождению коэффициента эжекции, при котором возникает кавитация

где ϕ1=0,95 коэффициент скорости потока в сопле-кавитаторе 12;

ϕ4=0,925 коэффициент скорости потока на ходе в камеру смешения 4;

dкc - диаметр камеры смешения 4;

dc - диаметр активного сопла-кавитатора 12;

Рр - давление рабочей жидкости перед входом в сопло-кавитатор 12;

Рк - абсолютное давление, при котором в жидкости возникает кавитация;

Рн - давление нагнетания жидкости на устье скважины поверхностным насосом.

Добыча пластового флюида погружной эжекционной установкой с одновременным воздействием на прискважинную зону продуктивного пласта осуществляется за счет организации кавитационного истечения в проточной части эжекторного насоса. При кавитационном истечении из сопла энергия упругих гидравлических колебаний, возникающих при схлопывании кавитационных каверн, переносится в пласт, при этом происходит дробление кольматанта (механического, химического или биологического), а за счет депрессии на пласт - его вынос из прискваженной зоны в ствол скважины, а затем с добываемой продукцией на дневную поверхность. Таким образом, происходит улучшение фильтрационных характеристик пласта и, тем самым, интенсификация добычи пластовых флюидов.

Генерирование кавитационного истечения в проточной части эжекторного насоса осуществляется за счет установки сопла-кавитатора и сводится к нахождению коэффициента эжекции эжекторного насоса, при котором возникает кавитация:

где ϕ1=0,95 коэффициент скорости потока в сопле-кавитаторе 12;

ϕ4=0,925 коэффициент скорости потока на ходе в камеру смешения 4;

dкс - диаметр камеры смешения 4;

dc - диаметр активного сопла-кавитатора 12;

Рр - давление рабочей жидкости перед входом в сопло-кавитатор 12;

Рк - абсолютное давление, при котором в жидкости возникает кавитация;

Рн - давление нагнетания жидкости на устье скважины поверхностным насосом

Величины Рр, Рк, можно найти по известным формулам гидравлики.

На фиг. 1 представлена погружная эжекционная установка, которая содержит установленные на внутренней колонне насосно-компрессорных труб (НКТ) 1 эжекторный насос 2, включающий корпус 5, в котором установлены соосно внутренней НКТ 1 сопло-кавитатор 12 и камера смешения 4 с диффузором 3. В верхней части корпуса 5 параллельно камере смешения 4 выполнены осевые каналы 11 для подвода рабочего потока, в средней части корпуса 5 выполнены осевые каналы 6 для подвода эжектированного потока из всасывающей полости 7, расположенной в нижней части корпуса 5, через всасывающий патрубок 8 с отверстиями в приемную камеру 10. Всасывающая полость 7 отделяется от всасывающего патрубка 8 подвижной тарелью 9.

Осевые каналы 11 для подвода рабочего потока со стороны верхнего конца сообщены с кольцевым пространством 13 между внешней НКТ 14 и внутренней НКТ 1, а со стороны нижнего конца - со средней полостью корпуса 5 для подвода активного потока на сопло-кавитатор 12.

Осевые каналы 6 для подвода эжектируемого потока со стороны верхнего конца сообщены с приемной камерой 10, а со стороны нижнего конца - со всасывающей полостью 7.

На фиг. 2 представлен общий вид сопла-кавитатора 6, проточная часть которого состоит из трех участков: первого входного, выполненного в виде коноидального насадка для максимального значения коэффициента скорости и расхода движущейся жидкости, радиусом скругления, равным 2÷5 диаметрам наименьшего сечения (2÷5 d); второго цилиндрического участка диаметром d длиной lц=2÷3d; третьего конически расходящегося участка с углом раскрытия 13°30' и длиной lд=8÷12d.

Способ работы погружной эжекционной установки для добычи пластового флюида из скважин заключается в следующем.

Погружную эжекционную установку спускают в скважину на двух колоннах коаксиально расположенных НКТ - внешней 14 и внутренней 1, вследствие того, что для работы эжекторного насоса 2 необходимо иметь два канала: один для подачи рабочей среды к соплу-кавитатору 12 эжекторного насоса 2 и второй для подъема эжектрируемого пластового флюида на поверхность.

Нагнетание рабочей жидкости в сопло-кавитатор 12 эжекторного насоса 2 осуществляют насосом, установленным на дневной поверхности (плунжерным или многоступенчатым центробежным). Рабочая жидкость по кольцевому пространству 13, образованному коаксиально расположенной сдвоенной колонной НКТ, поступает на осевые каналы подвода рабочего потока 11 и далее на прием сопла-кавитатора 12. За счет увеличения скорости при истечении жидкости из сопла-кавитатора 12, в приемной камере 10 создается зона пониженного давления, в результате чего подвижная тарель 9 поднимается вверх и пластовый флюид устремляется в отверстия всасывающего патрубка 8, затем в осевые каналы 6 для подвода эжекторного потока и в приемную камеру 10. В камере смешения 4 эжектируемый поток и рабочий поток смешиваются, поступают в диффузор 3 и затем по внутренней колонне НКТ 1 поступают на устье скважины. Происходит процесс добычи пластового флюида.

В случае периодической эксплуатации малодебитных скважин, когда подачу рабочего потока прекращают (при выключении поверхностного насоса) подвижная тарель 9 опускается, полностью запирает всасывающий патрубок 8, что препятствует обратным токам пластового флюида из внутренней колонны НКТ 1 в скважину и рабочего потока из кольцевого пространства 13 в скважину.

Для интенсифицирующей обработки продуктивного пласта вибрационным воздействием в проточной части эжекторного насоса 2 генерируется кавитационное истечение путем подбора геометрических параметров сопла-кавитатора 12, камеры смешения 4, и технологических параметров: коэффициента эжекции, давления закачивания и расхода рабочей жидкости поверхностным насосом расчетным путем.

При работе эжекторного насоса 2, при движении рабочего потока по соплу-кавитатору 12, поток с наименьшими гидравлическими сопротивлениями входит в первый участок (фиг. 2), во второй цилиндрической его части значение скорости жидкости наибольшее, а давления наименьшее, возникают кавитационные каверны, заполненные паром и газом, которые затем, в третьем конически расходящемся участке сопла-кавитатора 12, начинают расти и схлопываться. Процесс разрушения кавитационных каверн интенсивно продолжается в камере смешения 4 и заканчивается в диффузоре 3 эжекторного насоса 2 в области потока с низкими скоростями и высоким давлением. Тем самым происходит непрерывный процесс образования и схлопывания кавитационных каверн, сопровождающийся образованием гидравлических ударов.

Происходит процесс воздействия на структуры продуктивного пласта флюидом.

Для того, чтобы обеспечить кавитационный режим работы эжекторного насоса 2 в скважине, надо определить необходимое давление нагнетания рабочей жидкости на устье скважины Рн при следующих заданных параметрах: при известном низком значении величины пластового давления Рпл, глубины скважины Нскв, коэффициента продуктивности скважины Кпрод и дебита скважинной жидкости Qcкв.

Для указанных условий алгоритм проведения расчета кавитационного режима работы эжекторного насоса сводится к нахождению коэффициента эжекции, при котором возникает кавитация:

где ϕ1=0,95 коэффициент скорости потока в сопле-кавитаторе 12;

ϕ4=0,925 коэффициент скорости потока на ходе в камеру смешения 4;

dкс - диаметр камеры смешения 4;

dc- диаметр активного сопла-кавитатора 12;

Рр - давление рабочей жидкости перед входом в сопло-кавитатор 12;

Рк - абсолютное давление, при котором в жидкости возникает кавитация;

Рн - давление нагнетания жидкости на устье скважины поверхностным насосом

Величины Рр, Рк, можно найти по известным формулам гидравлики.

При осуществлении данного способа предлагается оптимизация работы добывающих скважин путем воздействия на прискважинную зону продуктивного пласта в процессе добычи флюида. Увеличение коэффициента извлечения пластового флюида осуществляется за счет виброимпульсного воздействия на прискважинную зону продуктивного пласта, возникающего при организации кавитационного истечения в проточной части эжекторного насоса. Данный способ технически легко реализуем, менее материалозатратен по сравнению с существующими аналогом и прототипом и позволяет эксплуатировать скважины в осложненных условиях, таких как высокий газовый фактор, пескование скважины.


Погружная эжекционная установка
Погружная эжекционная установка
Погружная эжекционная установка
Погружная эжекционная установка
Источник поступления информации: Роспатент

Showing 421-430 of 471 items.
24.07.2020
№220.018.3640

Способ производства хлебобулочных изделий

Изобретение относится к пищевой промышленности. Способ производства хлебобулочных изделий включает смешивание рецептурных компонентов, внесение фасолесодержащего компонента, замешивание теста, брожение, разделку, расстойку, выпечку. Перед внесением фасолесодержащий компонент готовят путем...
Тип: Изобретение
Номер охранного документа: 0002727305
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.3706

Способ получения комбинированных нативных крахмалов

Изобретение относится к крахмало-паточной отрасли пищевой промышленности. Способ получения комбинированных нативных крахмалов предусматривает выделение нативного крахмала в результате подготовки к переработке и измельчения крахмалсодержащего сырья разного ботанического происхождения, извлечения...
Тип: Изобретение
Номер охранного документа: 0002727282
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.372a

Способ производства ахлоридных хлебобулочных изделий

Изобретение относится к пищевой промышленности. Способ производства ахлоридных хлебобулочных изделий включает приготовление теста, его брожение, разделку, расстойку и выпечку. Приготовление теста осуществляют путем смешивания фасолесодержащего компонента с дрожжами, перемешивания и...
Тип: Изобретение
Номер охранного документа: 0002727397
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.376d

Способ производства хлебобулочных изделий

Изобретение относится к пищевой промышленности. Способ производства хлебобулочных изделий включает смешивание рецептурных компонентов, внесение фасолесодержащего компонента, замешивание теста, брожение, разделку, расстойку, выпечку. Перед внесением фасолесодержащий компонент готовят путем...
Тип: Изобретение
Номер охранного документа: 0002727361
Дата охранного документа: 21.07.2020
29.07.2020
№220.018.38ad

Перемешивающее устройство с прерывистым движением рабочего органа

Изобретение относится к перемешивающим устройствам и может применяться в химической, строительной, пищевой промышленности как устройство, необходимое для интенсификации тепломассообменных процессов, для выравнивания концентраций и температур во всем объеме жидкой среды. Перемешивающее...
Тип: Изобретение
Номер охранного документа: 0002727955
Дата охранного документа: 27.07.2020
31.07.2020
№220.018.3931

Способ производства мучных кондитерских изделий специализированного назначения

Изобретение относится к общественному питанию и пищевой промышленности, может быть использовано в производстве мучных кондитерских изделий специализированного назначения, а именно печенья, для профилактики заболеваний иммунной и сердечно-сосудистой систем. Способ производства мучных...
Тип: Изобретение
Номер охранного документа: 0002728336
Дата охранного документа: 29.07.2020
31.07.2020
№220.018.395b

Способ производства безглютенового теста

Изобретение относится к пищевой промышленности. Способ производства безглютенового теста для мягких вафель включает подготовку и смешивание рецептурных компонентов, с последующим замесом теста. Cмешивание рецептурных компонентов осуществляют в несколько этапов. На первом этапе путем...
Тип: Изобретение
Номер охранного документа: 0002728316
Дата охранного документа: 29.07.2020
31.07.2020
№220.018.397e

Способ производства мучных кондитерских изделий специализированного назначения

Изобретение относится к общественному питанию и пищевой промышленности, может быть использовано в производстве печенья специализированного назначения. Предложен способ производства мучных кондитерских изделий для профилактики заболеваний иммунной и сердечно-сосудистой систем, включающий...
Тип: Изобретение
Номер охранного документа: 0002728335
Дата охранного документа: 29.07.2020
31.07.2020
№220.018.39cd

Способ производства хлебобулочных изделий специализированного назначения

Изобретение относится к пищевой промышленности и общественному питанию и может быть использовано в производстве хлебобулочных изделий для профилактики заболеваний иммунной и сердечно-сосудистой систем. Способ производства хлебобулочных изделий специализированного назначения включает подготовку...
Тип: Изобретение
Номер охранного документа: 0002728392
Дата охранного документа: 29.07.2020
31.07.2020
№220.018.3a24

Капсулированные пищевые волокна

Изобретение относится к пищевой промышленности и может быть использовано при переработке растительного сырья. Предложены капсулированные пищевые волокна переработанного растительного сырья, которые включают ядро и оболочку в виде пищевого альгината натрия, при этом ядро представляет собой смесь...
Тип: Изобретение
Номер охранного документа: 0002728393
Дата охранного документа: 29.07.2020
Showing 11-11 of 11 items.
01.06.2023
№223.018.74e2

Способ промывки скважины от глинисто-песчаной или проппантовой пробки

Изобретение относится к нефтегазодобывающей промышленности, а именно промывке скважины от уплотненной глинисто-песчаной или проппантовой пробки. Способ включает спуск в скважину на колонне насосно-компрессорных труб устройства выше пробки, нагнетание промывочной жидкости с подъемом жидкости...
Тип: Изобретение
Номер охранного документа: 0002796409
Дата охранного документа: 23.05.2023
+ добавить свой РИД